多线程并发——闭锁,珊栏,信号量
程序员文章站
2022-05-02 12:30:01
...
闭锁(CountDownLatch):多线程并发的时候,设置计数器,当计数器的值没有减到0的时候,调用await()方法的线程会阻塞。
-
countDownLatch():用来计数,每执行一次,计数器的值减去1
-
await():用来阻塞当前线程,当计数器中的值没有减为0的时候,await()方法让当前线程阻塞
设置计数器线程:
import java.util.concurrent.CountDownLatch;
//设置计数器线程
public class Thread1 implements Runnable {
private CountDownLatch countDownLatch;
public Thread1(CountDownLatch countDownLatch) {
this.countDownLatch = countDownLatch;
}
@Override
public void run() {
for (int i = 0; i < 10; i++) {
System.out.println(Thread.currentThread().getName() + " : " + i);
countDownLatch.countDown();
}
}
}
设置计数器阻塞线程:
import java.util.concurrent.CountDownLatch;
//当前要等待计数器的线程
public class Thread2 implements Runnable {
private CountDownLatch countDownLatch;
public Thread2(CountDownLatch countDownLatch) {
this.countDownLatch = countDownLatch;
}
@Override
public void run() {
try {
countDownLatch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
for (int i = 0; i < 10; i++) {
System.out.println(Thread.currentThread().getName() + " : " + i);
}
}
}
设置主线程:
import java.util.concurrent.CountDownLatch;
//设置计数器线程
public class Thread1 implements Runnable {
private CountDownLatch countDownLatch;
public Thread1(CountDownLatch countDownLatch) {
this.countDownLatch = countDownLatch;
}
@Override
public void run() {
for (int i = 0; i < 10; i++) {
System.out.println(Thread.currentThread().getName() + " : " + i);
countDownLatch.countDown();
}
}
}
打印结果:这里可以看到Thread2线程被阻塞住了,因为此时计数器的值为1,就实现了多线程的同步
珊栏(CyclicBarrier):一种同步工具类,栅栏能阻塞一组线程直到某个事件发生,直到所有线程都到达栅栏点,栅栏才会打开。所以栅栏一般用于多个线程需要相互等待的情况。
- await():用来阻塞线程,当没有达到预设数目时,此时所有在珊栏外的线程都会阻塞
设置测试线程:
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.CyclicBarrier;
//当前要等待计数器的线程
public class Thread2 implements Runnable {
private CyclicBarrier cyclicBarrier;
public Thread2(CyclicBarrier cyclicBarrier) {
this.cyclicBarrier = cyclicBarrier;
}
@Override
public void run() {
try {
cyclicBarrier.await();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " : hello");
}
}
设置主线程:
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.CyclicBarrier;
public class CountDownTest {
public static void main(String[] args) throws InterruptedException {
// 此时将计数器的值设置为11,而我们此时在Thread1中只是将计数器的值减少到1,所以Thread2中一定会阻塞
CyclicBarrier cyclicBarrier = new CyclicBarrier(5);
Thread thread1 = new Thread(new Thread2(cyclicBarrier));
Thread thread2 = new Thread(new Thread2(cyclicBarrier));
Thread thread3 = new Thread(new Thread2(cyclicBarrier));
Thread thread4 = new Thread(new Thread2(cyclicBarrier));
Thread thread5 = new Thread(new Thread2(cyclicBarrier));
thread1.start();
thread2.start();
thread3.start();
thread4.start();
thread5.start();
}
}
此时设置了珊栏的数目是5个线程,所以此时这5个线程可以并发执行,如果此时到达珊栏的线程数大于或着小于,那么线程就会阻塞。
信号量(Semaphore):java中使用Semaphore可以实现使用信号控制多线程并发。Semaphore可以控制某个资源可以同时被访问的次数。在Semaphore中,只有获取到了信号量的线程才可以执行,否则会阻塞,所以一定要记得执行完的线程要释放信号量,不然后面的线程无法获得信号量被阻塞住。
- acquire():获取一个信号量
- release():释放一个信号量
操作实现类:
import java.util.concurrent.Semaphore;
public class CountDownTest {
public static void main(String[] args) throws InterruptedException {
// 此时将计数器的值设置为11,而我们此时在Thread1中只是将计数器的值减少到1,所以Thread2中一定会阻塞
Semaphore semaphore = new Semaphore(5);
System.out.println(semaphore.availablePermits());
semaphore.acquire(6);
System.out.println("sigsoia");
}
}
执行结果:
只打印了5条信息,因为前5个获取了信号量,却没释放,所以剩下的线程必须阻塞