欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Python爬虫实战(中):数据可视化-教你做出漂亮的图表

程序员文章站 2022-05-01 22:41:54
...

本文来源于公众号【程序猿声】,作者向柯玮

Python爬虫实战(中):数据可视化-教你做出漂亮的图表

前言

各位看客老爷们,我又来啦。上一期我们利用Python+百度地图POI抓取了一些高校之间的距离数据,传送门:

干货 | Python爬虫实战:两点间的真实行车时间与路况分析(上)

不知道上一期的爬取数据的内容大家都品尝的怎么样了呢。

Python爬虫实战(中):数据可视化-教你做出漂亮的图表

今天给大家带来的是python中对数据进行可视化处理的内容。

可能大家并不是很懂这个可视化的意思,大家可以先在脑海里面脑补一下那种酷炫的数据分析图,脑补出来了吗?

嘿嘿,用Python究竟能做一些什么样的图表呢,可以肯定的告诉大家,只有你想不到,没有它做不到!吊了半天胃口,现在上图!

Python爬虫实战(中):数据可视化-教你做出漂亮的图表

Python爬虫实战(中):数据可视化-教你做出漂亮的图表

Python爬虫实战(中):数据可视化-教你做出漂亮的图表

Python爬虫实战(中):数据可视化-教你做出漂亮的图表

对,我们要做的图就是和上面这几张图片一样!酷吧?

Python爬虫实战(中):数据可视化-教你做出漂亮的图表

上面的效果图都是我们今天要介绍的主角pyecharts库制作的!当然,pyecharts的作图类型肯定不仅仅只有上述这些图形,它还有很多很多类型,在这里我就不多说了。

在这一期推文中呢,我们主要介绍的是第一种图形,柱状图的使用。

目录

  • pyecharts模块的下载

  • 模型的建立

  • 数据的导入

  • 图形的生成

  • 加点更炫的

  • 写在最后

pyecharts模块的下载

要使用这个模块,你必须要下载这个模块,打开自己电脑的cmd,输入pip install pyecharts就可以了,如果本来就有这个模块的话,就不用下载了。

当然,如果电脑没有pip这个模块的话,需要自己去下载一个这个模块,在后续的推文中,小玮会给大家带来一些python的基本配置应该做的相关推文,帮助大家解决python的安装问题。

Python爬虫实战(中):数据可视化-教你做出漂亮的图表

在安装这个模块之后,我们就可以在编译器中引用这个模块了。

from pyecharts.charts import Bar

这里的Bar柱状图的意思。

pyecharts的库里面有很多很多东西,我们没有必要全部引用,那样会让本来简单的程序运行起来忒慢。

模型的建立

引入了这个模块当然还不够,我们还需要数据。

数据的导入

大家还记得我们上一篇推文中生成的csv文件吗?如果已经忘了,请回去再看看上一篇推文,然后运行程序把相应的csv文件生成出来。

Python爬虫实战(中):数据可视化-教你做出漂亮的图表

那么,我现在就认为大家已经有这个csv文件了。在一个程序中,我们想要获得一个文件的数据,需要做什么?想一想。

没错,就是读取这个文件。那么大家还记得读取这个文件怎么办吗?没错,就是加入pandas模块,运用pandas的函数来进行文件的读取。

import pandas as pd

具体怎么读取呢?和之前的也是一模一样。

path_data=pd.read_csv(r'F:\my python\123.csv')

这些在上一篇推文中都已经很详细的介绍过了,这一次就不多说了。要是忘了记得回去看看奥-

Python爬虫实战(中):数据可视化-教你做出漂亮的图表

图形的生成

做好了这些之后,我们正式的来介绍一下建立柱状图这个函数。

第一步,定义一个变量是bar型变量。

bar=Bar()

这一句代码的意思就是使barBar型变量。接下里就是为这个变量赋x轴值和y轴值。

bar.add_xaxis(path_data['地点'].tolist())bar.add_yaxis('用时',path_data['time'].tolist())bar.add_yaxis('距离',path_data['distance'].tolist())

让我们一句一句研究代码。第一句,函数为add_xaxis(),就是添加x轴数据,给x轴添加什么数据呢?Path_data中的‘出发时间’这一列数据。

在这个位置我们要注意,划重点,一定要注意,在后面加上.tolist()

因为path_data是最开始读取csv文件的,里面的数据储存形式和csv形式保持一致,所以我们要把她转化为python中列表的形式,即使用.tolist这个函数,否则的话在这个位置添加x轴值是不起任何作用的。

Python爬虫实战(中):数据可视化-教你做出漂亮的图表

现在有了第一句的基础,理解第二句就不困难了,但是x轴和y轴的赋值形式任然有一些差别,这是为什么呢?

其实这是给我们赋的y值起一个名字,当然这个位置不起名字也可以,但是如果如果你有多个y值的时候就会产生意思分歧。

这是啥意思?看下面的图就知道了。

Python爬虫实战(中):数据可视化-教你做出漂亮的图表

Pyecharts是支持使用多个y值的。

比如这个图里面,我们就使用了商家A商家B两个y值名称,为了便于分辨,所以我的建议是取一个名字。

在最后,x值赋好了,y值赋好了,输入代码。

bar.render()

即可在当前python文件所在的目录下面看到一个html文件,点进去就可以看到我们所制作的图表了。

Python爬虫实战(中):数据可视化-教你做出漂亮的图表

当然括号里面还可以填生成文件的名字和生成的地址,这些都是可以修改的。

因为当前我们只需要生成这一个文件,当前目录下也没有别的render文件,所以我们就省略了这个步骤。

现在回到我们当前的文件,打开新生成的文件,就可以看到我们刚刚做的图表啦。

Python爬虫实战(中):数据可视化-教你做出漂亮的图表

但是,大家看到自己的图表是不是感觉有一点空荡荡的,不够酷炫?

不要着急,继续往下面看,我们还有进阶教程~

加点更炫的

想要使用更加酷炫的功能,我们需要再加入两个模块。

from pyecharts import options as opts  # 导入配置模块
from pyecharts.globals import ThemeType

这两个模块是pyecharts专门提供给使用者对图表进行进一步完善。

Python爬虫实战(中):数据可视化-教你做出漂亮的图表

比如说,你对这个图表的整体颜色有要求,不想是原来的白色,你可以在最开始建立bar的时候这样写。

bar=Bar(init_opts=opts.InitOpts(theme=ThemeType.PURPLE_PASSION,width='1280px',height='720px'))

Init_opts=opts.InitOpts()函数是给这个图表设置一些初始参数,比如说背景的颜色,分辨率等等的。

想设置主题色就用以下代码。

theme=themeType.xxxx

这个xxx就是主题的颜色,我在这里写的是紫色,当然还有其他的颜色,看客老爷可以自己去官网进行了解。后面分辨率的参数看客老爷可以根据自己需要进行调整。

这些是在建立图表的时候进行的一些配置,那么在输入数据以后,我们可以进行哪些步骤?

bar.set_global_opts(title_opts=opts.TitleOpts(title='武汉各高校之间的距离与乘车所需时间',subtitle='副标题'),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=60)),datazoom_opts=[opts.DataZoomOpts()])

我们可以使用set_global_opts函数进行我们所需要的个性化设置。

比如说主标题啊,副标题啊,x值的旋转角度啊,是否有滑块,等等配置。那实例给大家举一下例子看看这些具体指的什么。

Python爬虫实战(中):数据可视化-教你做出漂亮的图表

在这个图表中左上角的就是我的主标题,下面的就是我的副标题。

Python爬虫实战(中):数据可视化-教你做出漂亮的图表

X值倾斜的角度我们在这个图片里也可以很清晰的看出来,当前旋转的角度是60度,这个角度的旋转范围是-90°到90°。

Python爬虫实战(中):数据可视化-教你做出漂亮的图表

滑块就在最下面,那个可以滑动的东西。

因为有的时候可能数据太多,放在一个页面里看起来太拥挤,这是我们可以用滑块这个功能,使得我们的图形更加分散,便于观察。

Python爬虫实战(中):数据可视化-教你做出漂亮的图表

写在最后

当然,关于pyecharts的使用实例还有很多很多,各位看客老爷如果有兴趣可以自己去pyecharts的官网进行学习,这个项目是百度研发的,官网是中文的,还有十分详细的教程免费提供,所以小玮在这里就不多说了。

Python爬虫实战(中):数据可视化-教你做出漂亮的图表

在这个位置,我们已经完成了数据的爬取和做成图表。

当然,这和老师吩咐的任务完成还有一定的距离,我们没有统计时间,因为最近由于肺炎,道路没有发生拥堵,统计时间发现并没有明显的变化,最终结果趋于一根平行x轴的直线。

所以就不在这里讲解时间的统计和回归分析的步骤了。等一切恢复正常了以后,会专门再写一篇推文介绍。

最近的肺炎如此严重,各位看客老爷们一定要注意防护!

跟着小玮,带你一步一步走进数据结构和爬虫的世界。

代码可以在后台回复 PC02 获取Python爬虫实战(中):数据可视化-教你做出漂亮的图表