欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

tensorflow-cpu/gpu速度 cpu(3分钟)vs gpu(4秒)还是gpu快

程序员文章站 2022-05-01 20:08:43
...

测试代码如下:


import sys


import numpy as np


import tensorflow as tf


from datetime import datetime


device_name=sys.argv[1] # Choose device from cmd line. Options: gpu or cpu


shape=(int(sys.argv[2]), int(sys.argv[2]))


if device_name=="gpu":


device_name="/gpu:0"


else:


device_name="/cpu:0"


with tf.device(device_name):


random_matrix=tf.random_uniform(shape=shape, minval=0, maxval=1)


dot_operation=tf.matmul(random_matrix, tf.transpose(random_matrix))


sum_operation=tfuce_sum(dot_operation)


startTime=datetime.now()


with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as session:


result=session(sum_operation)


print(result)


# It can be hard to see the results on the terminal with lots of output -- add some newlines to improve readability.


print("


" * 5)


print("Shape:", shape, "Device:", device_name)


print("Time taken:", datetime.now() - startTime)


print("


" * 5)


详细日志:


python .\demo01.py gpu 1500


2022-07-29 23:45:53.521707: I T:\src\github ensorflow ensorflow\core\platform\cpu_feature_guard:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2


2022-07-29 23:45:54.093709: I T:\src\github ensorflow ensorflow\core\common_runtime\gpu\gpu_device:1392] Found device 0 with properties:


name: GeForce 940MX major: 5 minor: 0 memoryClockRate(GHz): 1.189


pciBusID: 0000:02:00.0


totalMemory: 2.00GiB freeMemory: 1.66GiB


2022-07-29 23:45:54.109284: I T:\src\github ensorflow ensorflow\core\common_runtime\gpu\gpu_device:1471] Adding visible gpu devices: 0


2022-07-29 23:45:55.044900: I T:\src\github ensorflow ensorflow\www.tisheng8.com\core\common_runtime\gpu\gpu_device:952] Device interconnect StreamExecutor with strength 1 edge matrix:


2022-07-29 23:45:55.055221: I T:\src\github ensorflow ensorflow\core\common_runtime\gpu\gpu_device:958] 0


2022-07-29 23:45:55.061725: I T:\src\github ensorflow ensorflow\core\common_runtime\gpu\gpu_device:971] 0: N


2022-07-29 23:45:55.070524: I T:\src\github ensorflow ensorflow\core\common_runtime\gpu\gpu_device:1084] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 1422 MB memory) -> physical GPU (device: 0, name: GeForce 940MX, pci bus id: 0000:02:00.0, compute capability: 5.0)


Device mapping:


/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: GeForce 940MX, pci bus id: 0000:02:00.0, compute capability: 5.0


2022-07-29 23:45:55.217599: I T:\src\github ensorflow ensorflow\core\common_runtime\direct_session:288] Device mapping:


/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: GeForce 940MX, pci bus id: 0000:02:00.0, compute capability: 5.0


random_uniform/RandomUniform: (RandomUniform): /job:localhost/replica:0/task:0/device:GPU:0


2022-07-29 23:45:55.240213: I T:\src\github ensorflow ensorflow\core\common_runtime\placer:886] random_uniform/RandomUniform: (RandomUniform)/job:localhost/replica:0/task:0/device:GPU:0


random_uniform/sub: (Sub): /job:localhost/replica:0/task:0/device:GPU:0


2022-07-29 23:45:55.253903: I T:\src\github ensorflow ensorflow\core\common_runtime\placer:886] random_uniform/sub: (Sub)/job:localhost/replica:0/task:0/device:GPU:0


random_uniform/mul: (Mul): /job:localhost/replica:0/task:0/device:GPU:0


2022-07-29 23:45:55.263435: I T:\src\github ensorflow ensorflow\core\common_runtime\placer:886] random_uniform/mul: (Mul)/job:localhost/replica:0/task:0/device:GPU:0


random_uniform: (Add): /job:localhost/replica:0/task:0/device:GPU:0


2022-07-29 23:45:55.277615: I T:\src\github ensorflow ensorflow\core\common_runtime\placer:886] random_uniform: (Add)/job:localhost/replica:0/task:0/device:GPU:0


transpose/Rank: (Rank): /job:localhost/replica:0/task:0/device:GPU:0


2022-07-29 23:45:55.290588: I T:\src\github ensorflow ensorflow\core\common_runtime\placer:886] transpose/Rank: (Rank)/job:localhost/replica:0/task:0/device:GPU:0


transpose/sub: (Sub): /job:localhost/replica:0/task:0/device:GPU:0


2022-07-29 23:45:55.302476: I T:\src\github ensorflow ensorflow\core\common_runtime\placer:886] transpose/sub: (Sub)/job:localhost/replica:0/task:0/device:GPU:0


transpose/Range: (Range): /job:localhost/replica:0/task:0/device:GPU:0


2022-07-29 23:45:55.312525: I T:\src\github ensorflow ensorflow\core\common_runtime\placer:886] transpose/Range: (Range)/job:localhost/replica:0/task:0/device:GPU:0


transpose/sub_1: (Sub): /job:localhost/replica:0/task:0/device:GPU:0


2022-07-29 23:45:55.325154: I T:\src\github ensorflow ensorflow\core\common_runtime\placer:886] transpose/sub_1: (Sub)/job:localhost/replica:0/task:0/device:GPU:0


transpose: (Transpose): /job:localhost/replica:0/task:0/device:GPU:0


2022-07-29 23:45:55.338301: I T:\src\github ensorflow ensorflow\core\common_runtime\placer:886] transpose: (Transpose)/job:localhost/replica:0/task:0/device:GPU:0


MatMul: (MatMul): /job:localhost/replica:0/task:0/device:GPU:0


2022-07-29 23:45:55.349577: I T:\src\github ensorflow ensorflow\core\common_runtime\placer:886] MatMul: (MatMul)/job:localhost/replica:0/task:0/device:GPU:0


Sum: (Sum): /job:localhost/replica:0/task:0/device:GPU:0


2022-07-29 23:45:55.359293: I T:\src\github ensorflow ensorflow\core\common_runtime\placer:886] Sum: (Sum)/job:localhost/replica:0/task:0/device:GPU:0


random_uniform/shape: (Const): /job:localhost/replica:0/task:0/device:GPU:0


2022-07-29 23:45:55.372087: I T:\src\github ensorflow ensorflow\core\common_runtime\placer:886] random_uniform/shape: (Const)/job:localhost/replica:0/task:0/device:GPU:0


random_uniform/min: (Const): /job:localhost/replica:0/task:0/device:GPU:0


2022-07-29 23:45:55.386133: I T:\src\github ensorflow ensorflow\core\common_runtime\placer:886] random_uniform/min: (Const)/job:localhost/replica:0/task:0/device:GPU:0


random_uniform/max: (Const): /job:localhost/replica:0/task:0/device:GPU:0


2022-07-29 23:45:55.396248: I T:\src\github ensorflow ensorflow\core\common_runtime\placer:886] random_uniform/max: (Const)/job:localhost/replica:0/task:0/device:GPU:0


transpose/sub/y: (Const): /job:localhost/replica:0/task:0/device:GPU:0


2022-07-29 23:45:55.409642: I T:\src\github ensorflow ensorflow\core\common_runtime\placer:886] transpose/sub/y: (Const)/job:localhost/replica:0/task:0/device:GPU:0


transpose/Range/start: (Const): /job:localhost/replica:0/task:0/device:GPU:0


2022-07-29 23:45:55.423110: I T:\src\github ensorflow ensorflow\core\common_runtime\placer:886] transpose/Range/start: (Const)/job:localhost/replica:0/task:0/device:GPU:0


transpose/Range/delta: (Const): /job:localhost/replica:0/task:0/device:GPU:0


2022-07-29 23:45:55.435466: I T:\src\github ensorflow ensorflow\core\common_runtime\placer:886] transpose/Range/delta: (Const)/job:localhost/replica:0/task:0/device:GPU:0


Const: (Const): /job:localhost/replica:0/task:0/device:GPU:0


2022-07-29 23:45:55.447107: I T:\src\github ensorflow ensorflow\core\common_runtime\placer:886] Const: (Const)/job:localhost/replica:0/task:0/device:GPU:0


842822460.0


cpu 花了3分钟:


Shape: (1500, 1500) Device: /cpu:0


Time taken: 0:03:09.855242


gup 花了4秒钟:


Shape: (1500, 1500) Device: /gpu:0


Time taken: 0:00:04.823442


有个警告:


Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2


这个是对cpu的优化,这边用gpu 进行计算,可以忽略了。


使用gpu还是不错的。


速度超级快,4 秒就行,要是cpu的还要跑个3 分钟。


同样的安装cuda,cudnn 在 linux上面也是类似的。