深入学习Netty(3)——传统AIO编程
前言
之前已经整理过了bio、nio两种i/o的相关博文,每一种i/o都有其特点,但相对开发而言,肯定是要又高效又简单的i/o编程才是真正需要的,在之前的nio博文(深入学习netty(2)——传统nio编程)中就已经介绍过nio编程的缺点(相比较而言的缺点:同步非阻塞,需要单独开启线程不断轮询),所以才会有真正的异步非阻塞i/o出现,这就是此篇博文需要介绍的aio编程。
参考资料《netty in action》、《netty权威指南》(有需要的小伙伴可以评论或者私信我)
博文中所有的代码都已上传到github,欢迎star、fork
感兴趣可以先学习相关博文:
一、nio 2.0与aio编程
jdk 1.7升级了nio类库,升级后的nio类库称之为nio 2.0,java提供了异步文件i/o操作,同时提供了与unix网络编程事件驱动i/o对应的aio。
nio 2.0的异步套接字通道是真正的异步非阻塞i/o,对应有unix网络编程中的事件驱动i/o(aio),相比较nio,它不需要通过selector对注册的通道进行轮询操作即可实现异步读写,简化了nio的编程模型。
nio 2.0提供了新的异步通道的概念,异步通道提供了以下两种方式获取操作结果:
- 通过juc.futrue类来表示异步操作的结果。
asynchronoussocketchannel socketchannel = asynchronoussocketchannel.open(); inetsocketaddress inetsocketaddress = new inetsocketaddress("localhost", 8080); future<void> connect = socketchannel.connect(inetsocketaddress); while (!connect.isdone()) {
thread.sleep(10); }
- 在异步操作的时候传入java.nio.channels。实现completionhandler接口complete()的方法作为操作完成回调。
private class mycompletionhandler implements completionhandler<integer, bytebuffer> { @override public void completed(integer result, bytebuffer attachment) { // todo 回调后业务操作 } @override public void failed(throwable t, bytebuffer attachment) { t.printstacktrace(); }
二、aio服务端
(1)服务端aio异步处理任务asynctimeserverhandler:
- 创建异步服务通道并监听端口
- 异步监听客户端连接
/** * 服务端aio异步处理任务 * -创建异步服务通道监听端口 * -监听客户端连接 */ public class asynctimeserverhandler implements runnable{ private int port; countdownlatch latch; asynchronousserversocketchannel asynchronousserversocketchannel; public asynctimeserverhandler(int port) { this.port = port; try { // 创建异步的服务通道asynchronousserversocketchannel, 并bind监听端口 asynchronousserversocketchannel = asynchronousserversocketchannel.open(); asynchronousserversocketchannel.bind(new inetsocketaddress(port)); system.out.println("the time server is start in port : " + port); } catch (ioexception e) { e.printstacktrace(); } } @override public void run() { // countdownlatch没有count减一,所以导致一直阻塞 latch = new countdownlatch(1); doaccept(); try { // 防止执行操作线程还未结束,服务端线程就退出,程序不退出的前提下,才能够让accept继续可以回调接受来自客户端的连接 // 实际开发过程中不需要单独开启线程去处理asynchronousserversocketchannel latch.await(); } catch (interruptedexception e) { e.printstacktrace(); } } /** * 接收客户端的连接 * 参数completionhandler类型的handler实例来接收accept操作成功的通知消息 */ public void doaccept() { asynchronousserversocketchannel.accept(this, new acceptcompletionhandler()); } }
(2)服务端连接异步回调处理器acceptcompletionhandler:异步处理客户端连接完成后的操作
/** * 客户端连接异步处理器 * completed()方法完成回调logic * failed()方法完成失败回调logic */ public class acceptcompletionhandler implements completionhandler<asynchronoussocketchannel, asynctimeserverhandler> { /** * 调用该方法表示客户端已经介接入成功 * 同时再accept接收新的客户端连接 * @param result * @param attachment */ @override public void completed(asynchronoussocketchannel result, asynctimeserverhandler attachment) { // 此时还要继续调用accept方法是因为,completed方法表示上一个客户端连接完成,而下一个新的客户端需要连接 // 如此形成新的循环:每接收一个客户端的成功连接之后,再异步接收新的客户端连接 attachment.asynchronousserversocketchannel.accept(attachment, this); // 预分配1m的缓冲区 bytebuffer buffer = bytebuffer.allocate(1024); // 调用read方法异步读,传入completionhandler类型参数异步回调读事件 result.read(buffer, buffer, new readcompletionhandler(result)); } @override public void failed(throwable exc, asynctimeserverhandler attachment) { exc.printstacktrace(); // 让服务线程不再阻塞 attachment.latch.countdown(); } }
(3)服务端read事件异步回调处理器readcompletionhandler:异步回调处理客户端请求数据
/** * 服务端read事件异步处理器 * completed异步回调处理客户端请求数据 */ public class readcompletionhandler implements completionhandler<integer, bytebuffer> { private asynchronoussocketchannel channel; public readcompletionhandler(asynchronoussocketchannel channel) { if (this.channel == null) { this.channel = channel; } } @override public void completed(integer result, bytebuffer attachment) { attachment.flip(); // 根据缓冲区的可读字节创建byte数组 byte[] body = new byte[attachment.remaining()]; attachment.get(body); try { // 解析请求命令 string req = new string(body, "utf-8"); system.out.println("the time server receive order : " + req); string currenttime = "query time order".equalsignorecase(req) ? new java.util.date( system.currenttimemillis()).tostring() : "bad order"; // 发送当前时间给客户端 dowrite(currenttime); } catch (unsupportedencodingexception e) { e.printstacktrace(); } } private void dowrite(string currenttime) { if (currenttime != null && currenttime.trim().length() > 0) { byte[] bytes = (currenttime).getbytes(); bytebuffer writebuffer = bytebuffer.allocate(bytes.length); writebuffer.put(bytes); writebuffer.flip(); // write异步回调,传入completionhandler类型参数 channel.write(writebuffer, writebuffer, new completionhandler<integer, bytebuffer>() { @override public void completed(integer result, bytebuffer buffer) { // 如果没有发送完成,继续发送 if (buffer.hasremaining()) { channel.write(buffer, buffer, this); } } @override public void failed(throwable exc, bytebuffer attachment) { try { channel.close(); } catch (ioexception e) { // todo 只要是i/o异常就需要关闭链路,释放资源 } } }); } } @override public void failed(throwable exc, bytebuffer attachment) { try { this.channel.close(); } catch (ioexception e) { e.printstacktrace(); // todo 只要是i/o异常就需要关闭链路,释放资源 } } }
(4)服务端启动timeserver
/** * aio 异步非阻塞服务端 * 不需要单独开线程去处理read、write等事件 * 只需要关注complete-handlers中的回调completed方法 */ public class timeserver { public static void main(string[] args) throws ioexception { int port = 8086; asynctimeserverhandler timeserver = new asynctimeserverhandler(port); new thread(timeserver, "aio-asynctimeserverhandler").start(); } }
(5)启动服务端
服务端console:
使用命令netstat查看8086端口是否监听
三、aio客户端
(1)客户端aio异步回调处理任务:
- 打开asynchronoussocketchannel通道,连接服务端
- 发送服务端指令
- 回调处理服务端应答
/** * 客户端aio异步回调处理任务 * -打开asynchronoussocketchannel通道,连接服务端 * -发送服务端指令 * -回调处理服务端应答 */ public class asynctimeclienthandler implements completionhandler<void, asynctimeclienthandler>, runnable { private asynchronoussocketchannel client; private string host; private int port; private countdownlatch latch; public asynctimeclienthandler(string host, int port) { this.host = host; this.port = port; try { client = asynchronoussocketchannel.open(); } catch (ioexception e) { e.printstacktrace(); } } @override public void run() { latch = new countdownlatch(1); client.connect(new inetsocketaddress(host, port), this, this); try { // 防止异步操作都没完成,连接线程就结束退出 latch.await(); } catch (interruptedexception e1) { e1.printstacktrace(); } try { client.close(); } catch (ioexception e) { e.printstacktrace(); } } /** * 发送请求完成异步回调 * @param result * @param attachment */ @override public void completed(void result, asynctimeclienthandler attachment) { byte[] req = "query time order".getbytes(); bytebuffer writebuffer = bytebuffer.allocate(req.length); writebuffer.put(req); writebuffer.flip(); client.write(writebuffer, writebuffer, new completionhandler<integer, bytebuffer>() { @override public void completed(integer result, bytebuffer buffer) { if (buffer.hasremaining()) { client.write(buffer, buffer, this); } else { bytebuffer readbuffer = bytebuffer.allocate(1024); // 回调服务端应答消息 client.read(readbuffer, readbuffer, new completionhandler<integer, bytebuffer>() { @override public void completed(integer result, bytebuffer buffer) { buffer.flip(); byte[] bytes = new byte[buffer.remaining()]; buffer.get(bytes); string body; try { body = new string(bytes, "utf-8"); system.out.println("now is : " + body); // 服务端应答完成后,连接线程退出 latch.countdown(); } catch (unsupportedencodingexception e) { e.printstacktrace(); } } @override public void failed(throwable exc, bytebuffer attachment) { try { client.close(); // 防止线程一直阻塞 latch.countdown(); } catch (ioexception e) { // ingnore on close } } }); } } @override public void failed(throwable exc, bytebuffer attachment) { try { client.close(); latch.countdown(); } catch (ioexception e) { // ingnore on close } } }); } @override public void failed(throwable exc, asynctimeclienthandler attachment) { exc.printstacktrace(); try { client.close(); latch.countdown(); } catch (ioexception e) { e.printstacktrace(); } } }
(2)客户端timeclient
/** * aio 异步非阻塞 客户端 * 不需要单独开线程去处理read、write等事件 * 只需要关注complete-handlers中的回调completed方法 */ public class timeclient { public static void main(string[] args) { int port = 8086; new thread(new asynctimeclienthandler("127.0.0.1", port), "aio-asynctimeclienthandler").start(); } }
(3)启动客户端
客户端console:
服务端console:
四、总结
服务端通过countdownlatch一直阻塞
由代码实践我们可知:
jdk底层通过threadpoolexecutor执行回调通知,异步回调通知类由sun.nio.ch.asynchronouschannelgroupimpl实现,然后将任务提交到该线程池以处理i/o事件,并分派给completion-handlers ,该队列消耗对组中通道执行的异步操作的结果。
异步socketchannel是被动执行,不需要单独像nio编程那样单独创建一个独立的i/o线程处理读写操作,都是由jdk底层的线程池负责回调并驱动读写操作的。所以基于nio 2.0的新的异步非阻塞相比较nio编程要简单,这两区别在于:
- 在nio中等待io事件由我们注册的selector来完成,在感兴趣的事情来了,我们的线程来accept.read.write.connect...解析,解析完后再交由业务逻辑处理。
- 而在在异步io(aio、nio 2.0)中等待io事件同样为accept,read,write,connect,但数据处理交由系统完成,我们需要做的就是在completionhandlers中处理业务逻辑回调即可。