欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

从“约瑟夫问题”谈起

程序员文章站 2022-04-30 22:26:20
约瑟夫问题是一个出现在计算机科学和数学中的问题。在计算机编程的算法中,类似问题又称为约瑟夫环。 据说著名犹太历史学家 Josephus有过以下的故事:在罗马人占领乔塔帕特后,39 个犹太人与Josephus及他的朋友躲到一个洞中,39个犹太人决定宁愿死也不要被敌人抓到,于是决定了一个自杀方式,41个 ......

      约瑟夫问题是一个出现在计算机科学和数学中的问题。在计算机编程的算法中,类似问题又称为约瑟夫环。

      据说著名犹太历史学家 josephus有过以下的故事:在罗马人占领乔塔帕特后,39 个犹太人与josephus及他的朋友躲到一个洞中,39个犹太人决定宁愿死也不要被敌人抓到,于是决定了一个自杀方式,41个人排成一个圆圈,由第1个人开始报数,每报数到第3人该人就必须自杀,然后再由下一个重新报数,直到所有人都自杀身亡为止。然而josephus 和他的朋友并不想自杀。为避免与其他39个决定自杀的犹太人发生冲突,josephus要他的朋友先假装遵从,他将朋友与自己安排在第16个与第31个位置,于是逃过了这场死亡游戏。

      17世纪的法国数学家加斯帕在《数目的游戏问题》中讲了这样一个故事:15个教徒和15 个非教徒在深海上遇险,必须将一半的人投入海中,其余的人才能幸免于难,于是想了一个办法:30个人围成一圆圈,从第一个人开始依次报数,每数到第九个人就将他扔入大海,如此循环进行,直到仅余15个人为止。问怎样的​排法,才能使每次投入大海的都是非教徒。

【例1】约瑟夫问题。

      n个人围成一圈,从某个人开始,按顺时针方向从1开始依次编号。从编号为1的人开始顺时针1,2,…m报数,报到m的人退出圈子。这样不断循环下去,圈子里的人将不断减少。由于人的个数是有限的,因此最终会剩下一个人,该人就是优胜者。输入n和m,输出出圈顺序。
例如,n=6、m=5,出圈的顺序是:5,4,6,2,3,1。

      (1)编程思路。

      为输出出圈顺序,采用一个数组来进行模拟。

      定义int circle[n+1],并按circle[i]=i+1的方式赋予各元素初值。该值代表两个含义:1)值为0,代表编号i+1的人不再圈中;2)值非0,代表圈中第i个位置的人编号为i+1。

      定义变量i代表报数位置的流动,i的初值为0,代表编号为1的人的位置,i的变化方式为:

 i=(i+1)%(n),即0-->1-->2……->n-1  ->0-->1……。

     i流动到了位置i后,该位置的人若已出圈(circle[i]==0),显然无法报数,得跳过该位置;若该位置的人在圈中,则报数(定义一个表示报数的变量p,初值为0,每次报数p++)。

    当报数到m(即p==m)时,位置i的人出圈,记录出圈人数cnt++,同时p置为0。当出圈人数等于n时循环结束。

      (2)源程序。

#include <stdio.h>
int main()
{
      int n,m,i,p,cnt;
      int circle[50];
      while (scanf("%d%d",&n,&m) && n!=0)
      {
           for (i=0;i<n;i++)
               circle[i]=i+1;
           i=0; // 报数指示
           p=0; // 报数计数器
           cnt=0; // 出队人数
           while (cnt<n)
           {
                 if (circle[i]!=0) p++;
                 if (p==m)
                 {
                      printf("%d ",circle[i]);
                      cnt++;
                      circle[i]=0;
                      p=0;
                  }
                  i=(i+1)%(n);
             }
             printf("\n");
      }
      return 0;
}

下面我们从例1的基础上进行扩展讨论。

例如,运行例1的程序时,输入41  3,则输出为:

3  6  9  12  15   18   21   24   27   30   33   36   39   1   5   10   14   19   23   28   32   37

41  7  13  20  26  34  40  8  17  29  38  11  25  2  22  4  35  16  31

      为这个输出结果进行的模拟是需要耗时的。实际上,在大多数问题中,我们不关心中间的结果,只关心某个最终结果。例如,在josephus 的故事中,josephus 和他的朋友不想自杀,josephus 需要关心的是最后一个和倒数第2个出圈的编号是多少,至于中间过程(39个犹太人谁先自杀,谁后自杀)对josephus 来说无意义。因此,josephus 需要的是快速确定最后一个和倒数第2个出圈的编号,然后站到对应位置即可。而无需耗时模拟整个过程。

【例2】猴子选大王。

      一堆猴子都有编号,编号是1,2,3 ...m,这群猴子(m个)按照1~m的顺序围坐一圈,从第1开始数,每数到第n个,该猴子就要离开此圈,这样依次下来,直到圈中只剩下最后一只猴子,则该猴子为大王。已知猴子数m和报数间隔n(设1<=n<=m<=50),问编号为多少的猴子当大王?

      (1)编程思路1。

       将例1的源程序略作修改,增加一个变量last记录最后获胜者编号,不输出中间过程。显然,

if (cnt==n) last=circle[i];

       (2)源程序1。

#include <stdio.h>
int main()
{
     int n,m,i,p,cnt,last;
     int circle[50];
     while (scanf("%d%d",&n,&m) && n!=0)
     {
         for (i=0;i<n;i++)
             circle[i]=i+1;
         i=0; // 报数指示
         p=0; // 报数计数器
         cnt=0; // 出队人数
         while (cnt<n)
         {
              if (circle[i]!=0) p++;
              if (p==m)
              {
                   cnt++;
                   if (cnt==n) last=circle[i];
                   circle[i]=0;
                   p=0;
              }
              i=(i+1)%(n);
       }
       printf("%d\n",last);
    }
    return 0;
}

(3)编程思路2。

       源程序1中采用数组模拟,由于猴子在圈中还是出圈是通过数组元素circle[i]的值非0还是0来判断,位置并未真正删除,因此当n和m很大时,程序的执行效率很低。例如,仅求最后一个出圈的元素,循环就得执行m*n次(p从1报到m,每次报数流动i得走完整一圈,其中n-1个已出圈,圈中仅一个元素)。

      为提高运行效率,可以考虑采用循环链表来进行模拟,这样每次出圈就将链表中的相应元素删除。循环链表只剩最后一个元素时,输出胜者编号。

       (4)源程序2。

#include <stdio.h>
struct jose
{

      int code; // 编号
      jose *next;
};
int main()
{
      jose *head,*p1,*p2;
      int n,m,i,cnt,tmp;
      scanf("%d%d",&n,&m);
      while (n!=0 && m!=0)
      {
            head=new jose;
            head->code=1;
            p2=head;
            for (i=2;i<=n;i++) // 创建循环链表
           {
                p1=new jose;
                p1->code=i;
                p2->next=p1;
                p2=p1;
            }
            p2->next=head;
            p1=head;
            cnt=n;
            while (cnt>1)
            {
                  tmp=m%cnt; // 提高效率之举,当m大于圈中人数时会循环多圈,可以不用
                  if (tmp==0) tmp=cnt;
                  i=1;
                  while (i<tmp)       // 报数m-1次
                  {
                        i++;
                        p2=p1;
                        p1=p1->next;
                   }
                   p2->next=p1->next; // 报m的结点出圈
                   delete p1; // 释放出圈结点的空间
                   cnt--;
                   p1=p2->next;
           }
           printf("%d\n",p1->code);
           delete p1;
           scanf("%d%d",&n,&m);
    }
    return 0;
}

(5)编程思路3。

      本例中的源程序2相比源程序1可以提高运行效率,但毕竟也是采用过程模拟,因此对于n和m较大的情况,效率仍然不高。有没有可以根据n和m的值直接推出最后出圈人编号的办法呢?

       为了讨论方便,先把问题稍微改变一下,并不影响原意。

  问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。求胜利者的编号。
  我们知道第1个人(编号一定是(m-1)%n)出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开始):
  k , k+1 , k+2  ...  n-2 , n-1 , 0 , 1 , 2 , ... k-2
  并且从k开始报0。
  现在我们把他们的编号做一下转换:
  k --> 0        k+1 --> 1    k+2 --> 2
          ...                ...
  k-3 --> n-3  k-2 --> n-2
  变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根据转换把这个x变回去不刚好就是n个人情况的解吗?

      下面我们来推导变回去的公式。

       序列1: 1 , 2 , 3 , 4 ,  …k-1 , k , k+1  ,…, n-2 , n-1 , n
  序列2: 1 , 2 , 3 , 4 , … k-1 ,  k+1 , … , n-2 , n-1 , n
  序列3:  k+1 , k+2 , k+3 , …,  n-2 , n-1 , n ,  1 , 2 , 3 ,… , k-2 , k-1
  序列4: 1 ,  2 , 3 , 4 , … , 5 , 6 , 7 , 8 , …, n-2 , n-1
  ∵  k=m%n;

    ∴  x' = x+k = x+ m%n ;   而  x+ m%n 可能大于n

  ∴ x'=  (x+ m%n)%n =  (x+m)%n 。
  如何知道(n-1)个人报数的问题的解f(n-1)呢? 显然只要知道(n-2)个人的解f(n-2)就行了。(n-2)个人的解呢?当然是先求f(n-3) ---- 这显然就是一个倒推问题!
  令 f[i] 表示i个人玩报m退出的约瑟夫环游戏的最后胜利者的编号,则有递推公式:
  f[1] = 0 ;
  f[i] = (f[i-1]+m)%i;     (i>1)
  有了这个递推公式,我们就很容易求得n个人报m退出的约瑟夫问题的最后胜利者编号f[n]。因为实际生活中编号总是从1开始,我们输出f[n]+1即可。

       编写程序时,我们可以采用数组递推以便保存中间结果,也可以不保存中间任何结果采用迭代直接得到最后胜利者编号。

       (6)采用迭代方式实现的源程序3。

#include <stdio.h>
int main()
{
      int n,m,i,s;
      scanf("%d%d",&n,&m);
      while (n!=0 && m!=0)
     {
           s=0;
           for (i=2;i<=n;i++)
                s=(s+m) % i;
           printf("%d\n",s+1);
           scanf("%d%d",&n,&m);
      }
      return 0;
}

(7)采用递推方式实现的源程序4。 

// 采用打表的方式,先将所有的值求出来保存在二维数组f[51][51]中。
// f[n][m]的值代表n个人报m游戏的最后胜利者编号。
// 则有 f[i][m]=0, (i=1)
// f[i][m]= (f[i-1][m]+m)%i (i>1)
#include <stdio.h>
int main()
{
     int n,m,i,j,f[51][51];
     for (i=1;i<51;i++)
           f[1][i]=0;
     for (i=1;i<51;i++)
     {
           for (j=2;j<51;j++)
                f[j][i]=(f[j-1][i]+i)%j;
     }
     scanf("%d%d",&n,&m);
     while (n!=0 && m!=0)
     {
            printf("%d\n",f[n][m]+1);
            scanf("%d%d",&n,&m);
     }
     return 0;
}

 【例3】城市断电。

      有n(3<=n<150)个城市围成圈,先将第1个城市(编号为1)断电,然后每隔m个城市使一个城市断电,直到剩下最后一个城市不断电。问使2号城市不断电的最小的m是多少?

      (1)编程思路。

      采用例2的求最后胜利者的方式,对n个城市,从m=1开始搜索,若当前m可使2号城市作为胜利者,则m就是所求,否则m=m+1后,继续搜索。

      程序采用打表的方式,先将n=3~149的对应m值求出来并保存到数组ans[150]中。

      另外,需要注意的是第1个城市先断电了,2号城市相当第1个城市,也可以把问题看成编号从1~n-1的约瑟夫问题。

      (2)源程序。

#include <stdio.h>
int main()
{
      int ans[150],i,j,m,tmp;
      for (i = 3;i<150;i++)
      {
           m = 1;
           while(1)
           {
                 tmp = 1; // 注意第1个城市已经断电,相当从1~n-1个城市
                 for  (j = 2;j < i; j++)
                 {
                      tmp = (tmp + m)%j;
                      if  (tmp == 0)
                      {
                          tmp = j;
                       }
                  }
                  if (tmp == 1) // 最后胜利者是2号城市

                                      // (编号为1一开始就断电,2号相当圈中第1个城市)
                  {
                       ans[i] = m;
                       break;
                   }
                   m++;
             }
     }
     int n;
     scanf("%d",&n);
     while (n!=0)
     {
           printf("%d\n",ans[n]);
           scanf("%d",&n);
     }
     return 0;
}

将此源程序提交给poj 2244 eeny meeny moo”,可以accepted。