仅利用30行Python代码来展示X算法
这儿有个Python写的例子。
X = {1, 2, 3, 4, 5, 6, 7} Y = { 'A': [1, 4, 7], 'B': [1, 4], 'C': [4, 5, 7], 'D': [3, 5, 6], 'E': [2, 3, 6, 7], 'F': [2, 7]}
这个例子的唯一解是['B', 'D', 'F']。
精确覆盖问题是NP完备(译注:指没有任何一个够快的方法可以在合理的时间内,意即多项式时间 找到答案)。X算法是由大牛高德纳发明并实现。他提出了一种高效的实现技术叫舞蹈链,使用双向链表来表示该问题的矩阵。
然而,舞蹈链实现起来可能相当繁琐,并且不易写地正确。接下来就是展示Python奇迹的时刻了!有天我决定用Python来编写X 算法,并且我想出了一个有趣的舞蹈链变种。
算法
主要的思路是使用字典来代替双向链表来表示矩阵。我们已经有了 Y。从它那我们能快速的访问每行的列元素。现在我们还需要生成行的反向表,换句话说就是能从列中快速访问行元素。为实现这个目的,我们把X转换为字典。在上述的例子中,它应该写为
X = { 1: {'A', 'B'}, 2: {'E', 'F'}, 3: {'D', 'E'}, 4: {'A', 'B', 'C'}, 5: {'C', 'D'}, 6: {'D', 'E'}, 7: {'A', 'C', 'E', 'F'}}
眼尖的读者能注意到这跟Y的表示有轻微的不同。事实上,我们需要能快速删除和添加行到每列,这就是为什么我们使用集合。另一方面,高德纳没有提到这点,实际上整个算法中所有行是保持不变的。
以下是算法的代码。
def solve(X, Y, solution=[]): if not X: yield list(solution) else: c = min(X, key=lambda c: len(X[c])) for r in list(X[c]): solution.append(r) cols = select(X, Y, r) for s in solve(X, Y, solution): yield s deselect(X, Y, r, cols) solution.pop() def select(X, Y, r): cols = [] for j in Y[r]: for i in X[j]: for k in Y[i]: if k != j: X[k].remove(i) cols.append(X.pop(j)) return cols def deselect(X, Y, r, cols): for j in reversed(Y[r]): X[j] = cols.pop() for i in X[j]: for k in Y[i]: if k != j: X[k].add(i)
真的只有 30 行!
格式化输入
在解决实际问题前,我们需要将输入转换为上面描述的格式。可以这样简单处理
X = {j: set(filter(lambda i: j in Y[i], Y)) for j in X}
但这样太慢了。假如设 X 大小为 m,Y 的大小为 n,则迭代次数为 m*n。在这例子中的数独格子大小为 N,那需要 N^5 次。我们有更好的办法。
X = {j: set() for j in X} for i in Y: for j in Y[i]: X[j].add(i)
这还是 O(m*n) 的复杂度,但是是最坏情况。平均情况下它的性能会好很多,因为它不需要遍历所有的空格位。在数独的例子中,矩阵中每行恰好有 4 个条目,无论大小,因此它有N^3的复杂度。
优点
- 简单: 不需要构造复杂的数据结构,所有用到的结构Python都有提供。
- 可读性: 上述第一个例子是直接从Wikipedia上的范例直接转录下来的!
- 灵活性: 可以很简单得扩展来解决数独。
求解数独
我们需要做的就是把数独描述成精确覆盖问题。这里有完整的数独解法代码,它能处理任意大小,3×3,5×5,即使是2×3,所有代码少于100行,并包含doctest!(感谢Winfried Plappert 和 David Goodger的评论和建议)