读写锁,你难道不需要了解一下吗?
之前在的文章中已经写了公平锁、非公平锁,独享锁、共享锁,那么接下来我们就得介绍互斥锁和读写锁了。那我们我就来了解一波把!
锁的分类
- 公平锁/非公平锁
- 可重入锁
- 独享锁/共享锁
- 互斥锁/读写锁
- 乐观锁/悲观锁
- 分段锁
- 偏向锁/轻量级锁/重量级锁
- 自旋锁
互斥锁
首先我们先说什么是互斥?
互斥:事件A和B的交集为空,A与B就是互斥事件,也叫互不相容事件。这是百度百科中对互斥的的说法,比较官方,而其实所谓互斥,是指散布在不同进程之间的若干程序片断,
当某个进程运行其中一个程序片段时,其它进程就不能运行它们之中的任一程序片段,只能等到该进程运行完这个程序片段后才可以运行。
这样就是说互斥的两个线程之间是不可以同时运行,他们相互之间会排斥,必须是A线程运行完毕之后,B线程才能进行。
在我们通常使用的线程过程中遇到的最多的就是同步,实现同步的方法,我们就可以使用synchronized,而 synchronized 就是互斥锁。
但是这是很早之前我们使用过的了,其实还有一个是显式的,使用Lock 对象
####synchronized
我们先看看synchronized。
synchronized机制提供了对与每个对象相关的隐式监视器锁的访问, 并强制所有锁获取和释放均要出现在一个块结构中,
当获取了多个锁时, 它们必须以相反的顺序释放. synchronized机制对锁的释放是隐式的, 只要线程运行的代码超出了synchronized语句块范围, 锁就会被释放.
而Lock机制必须显式的调用Lock对象的unlock()方法才能释放锁, 这为获取锁和释放锁不出现在同一个块结构中, 以及以更*的顺序释放锁提供了可能.
我们看一下下面的几个场景:
(1) 普通方法前面加synchronized
synchronized public void test(){…}
这个操作就等价于在方法体前后包装了一个synchronized(this),或者说是给当前的类所在的对象加上了锁的标记,
而与它互斥的情况就会有三种,(也就是相互之间是的串的)
-
在该类的所有的静态方法中发生synchronized(this);
-
在该类的所有的静态方法前面加上synchronized关键字;
-
在其他类中得到该对象的引用,并对该对象进行synchronized操作;
synchronized public static void test(){…}
这个synchronized操作就等价于锁住了当前类的class对象,比如说这个类是A,那么相当于执行了synchronized(A.class)操作,
而与它互斥的场景就十分的明显了。
-
代码中任何一个地方发生了synchronized(A.class);
-
在该类的所有的静态的方法前面增加了synchronized关键字;
我们需要注意的是,锁住了类,并不是说我们锁住了类所在的对象,类本身也是一种对象呀。
它与类的实例是完全不同的两个对象,在加锁的时候不是相互以来的,换句话说,我们对类进行加锁并不与前面的一个案例锁描述的加锁互斥。
锁住了“子类”或“子类的对象”,与锁住“父类”或“父类的对象”是完全不想管的,他们彼此独立!
你看我们常说的synchronized的代码块加锁
synchronized (object){
//代码
}
这一段代码其实锁住的并不是代码块,而是锁住的object对象,因此在其他的代码中发生synchronized(object)时就会发生互斥。
读写锁
有很多时候会有人有疑问?读写锁是为了什么而存在的?这个如果你不看源码的话,你是不知道为什么的,如果你看了,那么就会很清晰的理解为什么了。
读写锁,是分为读锁和写锁的,那么他是为什么存在,其实最好理解的就是为了解决性能问题!
性能问题一直都是我们开发中最担心的一个问题,而JAVA提供了读写锁,在读的时候使用读锁,在写的时候使用写锁,如果在没有写锁的情况下,
读是无阻塞的,在一定程度上是它能提高程序的执行效率,读写锁之间,多个读锁不互斥,读锁和写锁确实互斥,这是JVM自己来控制的,而
JVM帮我们解决了,我们只需要去加锁即可。
我们来看看读写锁中经典的源码实例ReentrantReadWriteLock,
其实之前我已经不经意的提到过了,话不多来,来low一眼。
/**
获取读锁,如果写锁不是由其他线程持有,则获取并立即返回;
如果写锁被其他线程持有,阻塞,直到读锁被获得。
*/
public void lock() {
sync.acquireShared(1);
}
//acquireShared()首先会通过tryAcquireShared()来尝试获取锁。
//如果说获取不到那么他就回去执行 doAcquireShared(arg);直到获取到锁才会返回
//你看方法名do是不是想到了do-while呢?
public final void acquireShared(int arg) {
if (tryAcquireShared(arg) < 0)
doAcquireShared(arg);
}
//上面的这些方法全部都是在AbstractQueuedSynchronizer中
//而他通过Sync来调用的acquireShared
//而Sync则是继承的AbstractQueuedSynchronizer
abstract static class Sync extends AbstractQueuedSynchronizer
而他调用的tryAcquireShared则是在ReentrantReadWriteLock中
protected final int tryAcquireShared(int unused) {
Thread current = Thread.currentThread();
//获取状态
int c = getState();
//如果说锁状态不是0 并且获取锁的线程不是current线程 返回-1
if (exclusiveCount(c) != 0 &&
getExclusiveOwnerThread() != current)
return -1;
//统计读锁的次数
int r = sharedCount(c);
//若无需等待,并且共享读锁共享次数小于MAX_COUNT,则会把锁的共享次数加一,
//否则他会去执行fullTryAcquireShared
if (!readerShouldBlock() &&
r < MAX_COUNT &&
compareAndSetState(c, c + SHARED_UNIT)) {
if (r == 0) {
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) {
firstReaderHoldCount++;
} else {
HoldCounter rh = cachedHoldCounter;
if (rh == null || rh.tid != getThreadId(current))
cachedHoldCounter = rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
}
return 1;
}
//首次获取读锁失败后,重试获取
return fullTryAcquireShared(current);
}
/** fullTryAcquireShared()会根据是否需要阻塞等待
读取锁的共享计数是否超过限制”等等进行处理。
如果不需要阻塞等待,并且锁的共享计数没有超过限制,
则通过CAS尝试获取锁,并返回1。*/
final int fullTryAcquireShared(Thread current) {
/*
* This code is in part redundant with that in
* tryAcquireShared but is simpler overall by not
* complicating tryAcquireShared with interactions between
* retries and lazily reading hold counts.
*/
HoldCounter rh = null;
for (;;) {
int c = getState();
if (exclusiveCount(c) != 0) {
if (getExclusiveOwnerThread() != current)
return -1;
// else we hold the exclusive lock; blocking here
// would cause deadlock.
} else if (readerShouldBlock()) {
// Make sure we're not acquiring read lock reentrantly
if (firstReader == current) {
// assert firstReaderHoldCount > 0;
} else {
if (rh == null) {
rh = cachedHoldCounter;
if (rh == null || rh.tid != getThreadId(current)) {
rh = readHolds.get();
if (rh.count == 0)
readHolds.remove();
}
}
if (rh.count == 0)
return -1;
}
}
if (sharedCount(c) == MAX_COUNT)
throw new Error("Maximum lock count exceeded");
if (compareAndSetState(c, c + SHARED_UNIT)) {
if (sharedCount(c) == 0) {
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) {
firstReaderHoldCount++;
} else {
if (rh == null)
rh = cachedHoldCounter;
if (rh == null || rh.tid != getThreadId(current))
rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
cachedHoldCounter = rh; // cache for release
}
return 1;
}
}
}
上面的源码是ReentrantReadWriteLock,中对读锁的解释,也是获取锁的过程,解锁过程我就不多说了,又兴趣的可以去之前的文章中仔细的去看。
而写锁相对于读锁来说,可能就没有那么复杂了
public void lock() {
sync.acquire(1);
}
//此方法在AQS中
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
// 如果 tryAcquire 失败,那么进入到阻塞队列等待
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
//方法在 Sync中
protected final boolean tryAcquire(int acquires) {
/*
* Walkthrough:
* 1. If read count nonzero or write count nonzero
* and owner is a different thread, fail.
* 2. If count would saturate, fail. (This can only
* happen if count is already nonzero.)
* 3. Otherwise, this thread is eligible for lock if
* it is either a reentrant acquire or
* queue policy allows it. If so, update state
* and set owner.
*/
Thread current = Thread.currentThread();
int c = getState();
int w = exclusiveCount(c);
if (c != 0) {
// c != 0 && w == 0: 写锁可用,但是有线程持有读锁(也可能是自己持有)
// c != 0 && w !=0 && current != getExclusiveOwnerThread(): 其他线程持有写锁
// 也就是说,只要有读锁或写锁被占用,这次就不能获取到写锁
if (w == 0 || current != getExclusiveOwnerThread())
return false;
if (w + exclusiveCount(acquires) > MAX_COUNT)
throw new Error("Maximum lock count exceeded");
// Reentrant acquire
setState(c + acquires);
return true;
}
// 如果写锁获取不需要 block,那么进行 CAS,成功就代表获取到了写锁
if (writerShouldBlock() ||
!compareAndSetState(c, c + acquires))
return false;
setExclusiveOwnerThread(current);
return true;
}
上面的代码是写锁加锁的过程了,其实相对于读锁来说稍微简单一点点。
那么我们再来看一下写锁是怎么释放的。
public void unlock() {
sync.release(1);
}
//方法在AQS中
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
protected final boolean tryRelease(int releases) {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
int nextc = getState() - releases;
boolean free = exclusiveCount(nextc) == 0;
if (free)
setExclusiveOwnerThread(null);
setState(nextc);
// 如果 exclusiveCount(nextc) == 0,所有的写锁就都释放了,
// 那么返回 true,这样会进行唤醒后继节点的操作。
return free;
}
看完之后我们就能发现,他确实相对于读锁来说比较简单。
以上就是互斥锁和读写锁的所有解析过程,
在看文章的过程中,首先要先去看一下AQS到底是什么,不然很多东西会看不明白!
##总结
互斥锁是一种简单的加锁的方法来控制对共享资源的访问,互斥锁只有两种状态,即上锁( lock )和解锁( unlock )。
互斥锁的特点:
-
原子性:把一个互斥量锁定为一个原子操作,保证了如果一个线程锁定了一个互斥量,没有其他线程在同一时间可以成功锁定这个互斥量;
-
唯一性:如果一个线程锁定了一个互斥量,在它解除锁定之前,没有其他线程可以锁定这个互斥量;
读写锁是为了让程序的性能更加优越而存在的,
读写锁特点:
-
多个读者可以同时进行读
-
写者必须互斥(只允许一个写者写,也不能读者、写者同时进行)
-
写者优先于读者(一旦有写者,则后续读者必须等待,唤醒时优先考虑写者)
上一篇: java注解
推荐阅读