欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  数据库

MySQL转换分区表索引重用

程序员文章站 2022-04-30 08:45:25
...

生产环境下,大表数据量剧增,影响到了SQL的执行效率;业务越来越多,陆陆续续增加的索引并不是很合理,为了提高索引的使用率,需

背景:生产环境下,大表数据量剧增,影响到了SQL的执行效率;业务越来越多,陆陆续续增加的索引并不是很合理,为了提高索引的使用率,需要把不必要的索引合并起来,减少索引的数量,提高索引的使用率

方法:大表水平切分-->分区表转换;综合利用联合索引的特点,去掉一些多余的单列索引和一些重复的联合索引

这篇博文的主要内容:
转换分区表的方法:直接alter即可(;
分区表效率上的提升:一直以来好奇提升程度有多少这次顺便验证一下(*/ω\*);
索引合并的策略;

-------------------------------------正文-------------------------------------

分区表效率上的提升,依然采用了sysbench-0.5来进行测试,
虚拟机:
CPU:Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz,逻辑核心8个

内存:32GB

硬盘:250G

采用五张表,每张表2000W数据,做两组对比:单表 vs 分区表(十个分区,每个分区200W数据)
测试脚本需要注意的地方:跨分区的查询较少,大部分都是在一个分区内;读写混合,包含order by,count(*)等操作;所有查询均用到索引;
测试时间两个小时,结果如下:
总体延时对比(ms)

MySQL转换分区表索引重用

QPS对比

MySQL转换分区表索引重用

虽说基准测试的结果倾向于理想状况,不过在中高负载下,响应时间降低了超过30%还是挺吓人的Σ( ° △ °|||)︴)
不过这也证明了,,DB最大的瓶颈还是在IO~(顺序读最佳)

索引合并的策略:
这里简单写写~
MySQL本身有二级索引和merge_index的特性,这些留在以后再详细写(有生之年系列+1)
生产环境的索引如图(为了效果就不打码了,领导看到了不要打我~_(:з」∠)_)

MySQL转换分区表索引重用

箭头所指就是这次修改索引的目标,可以看到这三个索引分别是idx1, idx2, idx3
MySQL的索引利用有如下几个特点:一张表只能用上一个索引(或者是merge_index);如果where条件中包含联合索引的前置列,那么联合索引也能利用起来

比如说:有idx2存在的情况下,如果where条件只有shop_id,idx2也会被MySQL使用,同样的,where条件包含了shop_id,pay_time,还有其他列的(比如使用idx3的情况),也能用这个联合索引,
如果where条件中没有shop_id这个前置列的话,这个联合索引就不能被利用了~

注意:where条件只有shop_id的情况,使用idx2可能会比idx1要有更多的开销(联合索引体积更大),所以要权衡好“精简索引”和“列使用频率”孰轻孰重,做出正确的选择(当然绝大多数时候这种开销是可以忽略不计的)。

------------------------------------------------------------------------------------------------------------分区表相关的其他操作---------------------------------------------------------------------------------------------------------------
分区表的管理操作

删除分区:

alter table emp drop partition p1;

不可以删除hash或者key分区。

一次性删除多个分区,alter table emp drop partition p1,p2;

增加分区:

alter table emp add partition (partition p3 values less than (4000));

alter table empl add partition (partition p3 values in (40));

分解分区:

Reorganizepartition关键字可以对表的部分分区或全部分区进行修改,并且不会丢失数据。分解前后分区的整体范围应该一致。

alter table te

reorganize partition p1 into

(

partition p1 values less than (100),

partition p3 values less than (1000)

); ----不会丢失数据

合并分区:

Merge分区:把2个分区合并为一个。
alter table te

reorganize partition p1,p3 into

(partition p1 values less than (1000));

----不会丢失数据

重新定义hash分区表:

Alter table emp partition by hash(salary)partitions 7;

----不会丢失数据

重新定义range分区表:

Alter table emp partitionbyrange(salary)

(

partition p1 values less than (2000),

partition p2 values less than (4000)

); ----不会丢失数据

删除表的所有分区:

Alter table emp removepartitioning;--不会丢失数据

重建分区:

这和先删除保存在分区中的所有记录,然后重新插入它们,具有同样的效果。它可用于整理分区碎片。

ALTER TABLE emp rebuild partitionp1,p2;

优化分区:

如果从分区中删除了大量的行,或者对一个带有可变长度的行(也就是说,有VARCHAR,BLOB,或TEXT类型的列)作了许多修改,可以使用“ALTER TABLE ... OPTIMIZE PARTITION”来收回没有使用的空间,并整理分区数据文件的碎片。

ALTER TABLE emp optimize partition p1,p2;

分析分区:

读取并保存分区的键分布。

ALTER TABLE emp analyze partition p1,p2;

修补分区:

修补被破坏的分区。

ALTER TABLE emp repairpartition p1,p2;

检查分区:

可以使用几乎与对非分区表使用CHECK TABLE 相同的方式检查分区。

ALTER TABLE emp CHECK partition p1,p2;

这个命令可以告诉你表emp的分区p1,p2中的数据或索引是否已经被破坏。如果发生了这种情况,使用“ALTER TABLE ... REPAIR PARTITION”来修补该分区。

本文永久更新链接地址