欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

基于Berkeley DB实现的持久化队列

程序员文章站 2022-04-29 15:55:19
...

         本博客属原创文章,欢迎转载!转载请务必注明出处:http://guoyunsky.iteye.com/blog/1169912

 

      队列很常见,但大部分的队列是将数据放入到内存.如果数据过多,就有内存溢出危险,而且长久占据着内存,也会影响性能.比如爬虫,将要抓取的URL放到内存,而URL过多,内存肯定要爆.在读Heritrix源码中,发现Heritrix是基于Bdb实现了一个持久化队列,于是我就将这块代码独立出来,平时使用也蛮爽的,现在拿出来共享.同时数据已经持久化,相比放在内存的一次性,可以循环累加使用.

      大家也知道BDB的高性能和嵌入式.但这个持久化队列我觉得比较适合单机.如果涉及到分布式,就不大适合了.毕竟分布式要通信,负载均衡,冗余等.可以用其他的数据库等替代.

      这里大概先说下实现原理,BDB是Key-Value型数据库,而队列是FIFO.所以这个持久化队列以位置作为BDB的Key,数据作为BDB的Value.然后用两个变量,分别记录队列两头的位置,也就是头部和尾部.当有数据插入的时候,就以尾部的位置为这个数据的Key.而当要取出数据时,以头部位置作为Key,获取这个Key的数据.原理大概如此,这个类也继承AbstractQueue,这里贴上代码.以下代码需引用bdb-je,common-io,junit.请在附件中下载

  1.       自定义的BDB环境类,可以缓存StoredClassCatalog并共享
package com.guoyun.util;

import java.io.File;

import com.sleepycat.bind.serial.StoredClassCatalog;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.Environment;
import com.sleepycat.je.EnvironmentConfig;
/**
 * BDB数据库环境,可以缓存StoredClassCatalog并共享
 * 
 * @contributor guoyun
 */
public class BdbEnvironment extends Environment {
    StoredClassCatalog classCatalog; 
    Database classCatalogDB;
    
    /**
     * Constructor
     * 
     * @param envHome 数据库环境目录
     * @param envConfig config options  数据库换纪念馆配置
     * @throws DatabaseException
     */
    public BdbEnvironment(File envHome, EnvironmentConfig envConfig) throws DatabaseException {
        super(envHome, envConfig);
    }

    /**
     * 返回StoredClassCatalog
     * @return the cached class catalog
     */
    public StoredClassCatalog getClassCatalog() {
        if(classCatalog == null) {
            DatabaseConfig dbConfig = new DatabaseConfig();
            dbConfig.setAllowCreate(true);
            try {
                classCatalogDB = openDatabase(null, "classCatalog", dbConfig);
                classCatalog = new StoredClassCatalog(classCatalogDB);
            } catch (DatabaseException e) {
                // TODO Auto-generated catch block
                throw new RuntimeException(e);
            }
        }
        return classCatalog;
    }

    @Override
    public synchronized void close() throws DatabaseException {
        if(classCatalogDB!=null) {
            classCatalogDB.close();
        }
        super.close();
    }

}

 

       2.  基于BDB实现的持久化队列

package com.guoyun.util;

import java.io.File;
import java.io.IOException;
import java.io.Serializable;
import java.util.AbstractQueue;
import java.util.Iterator;
import java.util.concurrent.atomic.AtomicLong;

import org.apache.commons.io.FileUtils;

import com.sleepycat.bind.EntryBinding;
import com.sleepycat.bind.serial.SerialBinding;
import com.sleepycat.bind.serial.StoredClassCatalog;
import com.sleepycat.bind.tuple.TupleBinding;
import com.sleepycat.collections.StoredMap;
import com.sleepycat.collections.StoredSortedMap;
import com.sleepycat.je.Database;
import com.sleepycat.je.DatabaseConfig;
import com.sleepycat.je.DatabaseException;
import com.sleepycat.je.DatabaseExistsException;
import com.sleepycat.je.DatabaseNotFoundException;
import com.sleepycat.je.EnvironmentConfig;
/**
 * 持久化队列,基于BDB实现,也继承Queue,以及可以序列化.但不等同于Queue的时,不再使用后需要关闭
 * 相比一般的内存Queue,插入和获取值需要多消耗一定的时间
 * 这里为什么是继承AbstractQueue而不是实现Queue接口,是因为只要实现offer,peek,poll几个方法即可,
 * 其他如remove,addAll,AbstractQueue会基于这几个方法去实现
 * 
 * @contributor guoyun
 * @param <E>
 */
public class BdbPersistentQueue<E extends Serializable> extends AbstractQueue<E> implements
        Serializable {
    private static final long serialVersionUID = 3427799316155220967L;
    private transient BdbEnvironment dbEnv;            // 数据库环境,无需序列化
    private transient Database queueDb;             // 数据库,用于保存值,使得支持队列持久化,无需序列化
    private transient StoredMap<Long,E> queueMap;   // 持久化Map,Key为指针位置,Value为值,无需序列化
    private transient String dbDir;                 // 数据库所在目录
    private transient String dbName;				// 数据库名字
    private AtomicLong headIndex;                   // 头部指针
    private AtomicLong tailIndex;                   // 尾部指针
    private transient E peekItem=null;              // 当前获取的值
    
    /**
     * 构造函数,传入BDB数据库
     * 
     * @param db
     * @param valueClass
     * @param classCatalog
     */
    public BdbPersistentQueue(Database db,Class<E> valueClass,StoredClassCatalog classCatalog){
        this.queueDb=db;
        this.dbName=db.getDatabaseName();
        headIndex=new AtomicLong(0);
        tailIndex=new AtomicLong(0);
        bindDatabase(queueDb,valueClass,classCatalog);
    }
    /**
     * 构造函数,传入BDB数据库位置和名字,自己创建数据库
     * 
     * @param dbDir
     * @param dbName
     * @param valueClass
     */
    public BdbPersistentQueue(String dbDir,String dbName,Class<E> valueClass){
        headIndex=new AtomicLong(0);
        tailIndex=new AtomicLong(0);
        this.dbDir=dbDir;
        this.dbName=dbName;
        createAndBindDatabase(dbDir,dbName,valueClass);
    }
    /**
     * 绑定数据库
     * 
     * @param db
     * @param valueClass
     * @param classCatalog
     */
    public void bindDatabase(Database db, Class<E> valueClass, StoredClassCatalog classCatalog){
        EntryBinding<E> valueBinding = TupleBinding.getPrimitiveBinding(valueClass);
        if(valueBinding == null) {
            valueBinding = new SerialBinding<E>(classCatalog, valueClass);   // 序列化绑定
        }
        queueDb = db;
        queueMap = new StoredSortedMap<Long,E>(
                db,                                             // db
                TupleBinding.getPrimitiveBinding(Long.class),   //Key
                valueBinding,                                   // Value
                true);                                          // allow write
    }
    /**
     * 创建以及绑定数据库
     * 
     * @param dbDir
     * @param dbName
     * @param valueClass
     * @throws DatabaseNotFoundException
     * @throws DatabaseExistsException
     * @throws DatabaseException
     * @throws IllegalArgumentException
     */
    private void createAndBindDatabase(String dbDir, String dbName,Class<E> valueClass) throws DatabaseNotFoundException,
    DatabaseExistsException,DatabaseException,IllegalArgumentException{
        File envFile = null;
        EnvironmentConfig envConfig = null;
        DatabaseConfig dbConfig = null;
        Database db=null;

        try {
            // 数据库位置
            envFile = new File(dbDir);
            
            // 数据库环境配置
            envConfig = new EnvironmentConfig();
            envConfig.setAllowCreate(true);
            envConfig.setTransactional(false);
            
            // 数据库配置
            dbConfig = new DatabaseConfig();
            dbConfig.setAllowCreate(true);
            dbConfig.setTransactional(false);
            dbConfig.setDeferredWrite(true);
            
            // 创建环境
            dbEnv = new BdbEnvironment(envFile, envConfig);
            // 打开数据库
            db = dbEnv.openDatabase(null, dbName, dbConfig);
            // 绑定数据库
            bindDatabase(db,valueClass,dbEnv.getClassCatalog());
             
        } catch (DatabaseNotFoundException e) {
            throw e;
        } catch (DatabaseExistsException e) {
            throw e;
        } catch (DatabaseException e) {
            throw e;
        } catch (IllegalArgumentException e) {
            throw e;
        }

        
    }
    
    /**
     * 值遍历器
     */
    @Override
    public Iterator<E> iterator() {
        return queueMap.values().iterator();
    }
    /**
     * 大小
     */
    @Override
    public int size() {
        synchronized(tailIndex){
            synchronized(headIndex){
                return (int)(tailIndex.get()-headIndex.get());
            }
        }
    }
    
    /**
     * 插入值
     */
    @Override
    public boolean offer(E e) {
        synchronized(tailIndex){
            queueMap.put(tailIndex.getAndIncrement(), e);   // 从尾部插入
        }
        return true;
    }
    
    /**
     * 获取值,从头部获取
     */
    @Override
    public E peek() {
        synchronized(headIndex){
            if(peekItem!=null){
                return peekItem;
            }
            E headItem=null;
            while(headItem==null&&headIndex.get()<tailIndex.get()){ // 没有超出范围
                headItem=queueMap.get(headIndex.get());
                if(headItem!=null){
                    peekItem=headItem;
                    continue;
                } 
                headIndex.incrementAndGet();    // 头部指针后移
            }
            return headItem;
        }
    }
    
    /**
     * 移出元素,移出头部元素
     */
    @Override
    public E poll() {
        synchronized(headIndex){
            E headItem=peek();
            if(headItem!=null){
                queueMap.remove(headIndex.getAndIncrement());
                peekItem=null;
                return headItem;
            }
        }
        return null;
    }
    
    /**
     * 关闭,也就是关闭所是用的BDB数据库但不关闭数据库环境
     */
    public void close(){
        try {
            if(queueDb!=null){
                queueDb.sync();
                queueDb.close();
            }
        } catch (DatabaseException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        } catch (UnsupportedOperationException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }
    }
    
    /**
     * 清理,会清空数据库,并且删掉数据库所在目录,慎用.如果想保留数据,请调用close()
     */
    @Override
    public void clear() {
       try {
    	   close();
    	   if(dbEnv!=null&&queueDb!=null){
				dbEnv.removeDatabase(null, dbName==null?queueDb.getDatabaseName():dbName); 
                dbEnv.close();
           }
	    } catch (DatabaseNotFoundException e) {
	        // TODO Auto-generated catch block
	        e.printStackTrace();
	    } catch (DatabaseException e) {
	        // TODO Auto-generated catch block
	        e.printStackTrace();
	    } finally{
	    	try {
	    		if(this.dbDir!=null){
	    			FileUtils.deleteDirectory(new File(this.dbDir));
	    		}
				
			} catch (IOException e) {
				// TODO Auto-generated catch block
				e.printStackTrace();
			}
	    }
    }
    
}

 

 

3. 测试类,测试数据准确性和性能

package com.guoyun.util;

import java.io.File;
import java.util.Queue;
import java.util.concurrent.LinkedBlockingQueue;

import junit.framework.TestCase;

public class BdbPersistentQueueTest extends TestCase{
    Queue<String> memoryQueue;
    Queue<String> persistentQueue;
    
    @Override
    protected void setUp() throws Exception {
        super.setUp();
        memoryQueue=new LinkedBlockingQueue<String>();
        String dbDir="E:/java/test/bdbDir";
        File file=new File(dbDir);
        if(!file.exists()||!file.isDirectory()){
            file.mkdirs();
        }
        persistentQueue=new BdbPersistentQueue(dbDir,"pq",String.class);
    }

    @Override
    protected void tearDown() throws Exception {
        super.tearDown();
        memoryQueue.clear();
        memoryQueue=null;
        persistentQueue.clear();
        persistentQueue=null;
    }
    
    /**
     * 排放值
     * @param queue
     * @return      排放的数据个数
     */
    public int drain(Queue<String> queue){
        int count=0;
        while(true){
            try {
                queue.remove();
                count++;
            } catch (Exception e) {
                return count;
            }
        }
       
    }
    /**
     * 
     * @param queue
     * @param size
     */
    public void fill(Queue<String> queue,int size){
        for(int i=0;i<size;i++){
            queue.add(i+"");
        }
    }
    
    public void checkTime(int size){
        System.out.println("1.内存Queue插入和排空数据所耗时间");
        long time=0;
        long start=System.nanoTime();
        fill(memoryQueue,size);
        time=System.nanoTime()-start;
        System.out.println("\t填充 "+size+" 条数据耗时: "+(double)time/1000000+" 毫秒,单条耗时: "+((double)time/size)+" 纳秒");
        start=System.nanoTime();
        drain(memoryQueue);
        time=System.nanoTime()-start;
        System.out.println("\t排空 "+size+" 条数据耗时: "+(double)time/1000000+" 毫秒,单条耗时: "+((double)time/size)+" 纳秒");
        
        System.out.println("2.持久化Queue插入和排空数据所耗时间");
        start=System.nanoTime();
        fill(persistentQueue,size);
        time=System.nanoTime()-start;
        System.out.println("\t填充 "+size+" 条数据耗时: "+(double)time/1000000+" 毫秒,单条耗时: "+((double)time/size/1000000)+" 豪秒");
        start=System.nanoTime();
        drain(persistentQueue);
        time=System.nanoTime()-start;
        System.out.println("\t排空 "+size+" 条数据耗时: "+(double)time/1000000+" 毫秒,单条耗时: "+((double)time/size/1000)+" 豪秒");
        
    }
    
    /**
     * 十万数量级测试
     */
    public void testTime_tenThousand(){
        System.out.println("========测试1000000(十万)条数据=================");
        checkTime(100000);
    }
    
    
    /**
     * 百万数量级测试
     */
    public void testTime_mil(){
        System.out.println("========测试1000000(百万)条数据=================");
        checkTime(1000000);
    }
    

    /**
     * 千万数量级测试,注意要防止内存溢出
     */
    public void testTime_tenMil(){
        System.out.println("========测试10000000(千万)条数据=================");
        checkTime(10000000);
    }
    
    /**
     * 测试队列数据准确性
     * @param queue
     * @param queueName
     * @param size
     */
    public void checkDataExact(Queue<String> queue,String queueName,int size){
    	if(queue.size()!=size){
    		System.err.println("Error size of "+queueName);
    	}
    	String value=null;
    	for(int i=0;i<size;i++){
    		value=queue.remove();
    		if(!((i+"").equals(value))){
    			System.err.println("Error "+queueName+":"+i+"->"+value);
    		}
    	}
    }
    
    /**
     * 测试队列中数据的准确性,包括长度
     */
    public void testExact(){
    	int size=100;
    	fill(memoryQueue,size);
    	fill(persistentQueue,size);
    	
    	checkDataExact(memoryQueue,"MemoryQueue",100);
    	checkDataExact(persistentQueue,"PersistentQueue",100);
    	 
    }
    
}

 

4.测试性能

========测试1000000(十万)条数据=================
1.内存Queue插入和排空数据所耗时间
 填充 100000 条数据耗时: 53.550787 毫秒,单条耗时: 535.50787 纳秒
 排空 100000 条数据耗时: 27.09901 毫秒,单条耗时: 270.9901 纳秒
2.持久化Queue插入和排空数据所耗时间
 填充 100000 条数据耗时: 1399.644305 毫秒,单条耗时: 0.01399644305 豪秒
 排空 100000 条数据耗时: 2104.765179 毫秒,单条耗时: 21.04765179 豪秒

 持久化写入是内存写入的26倍,读取是77倍

========测试1000000(百万)条数据=================
1.内存Queue插入和排空数据所耗时间
 填充 1000000 条数据耗时: 699.105888 毫秒,单条耗时: 699.105888 纳秒
 排空 1000000 条数据耗时: 158.792281 毫秒,单条耗时: 158.792281 纳秒
2.持久化Queue插入和排空数据所耗时间
 填充 1000000 条数据耗时: 11978.132218 毫秒,单条耗时: 0.011978132218 豪秒
 排空 1000000 条数据耗时: 22355.617205 毫秒,单条耗时: 22.355617204999998 豪秒

 持久化写入是内存写入的17倍,读取是141倍

 

========测试10000000(千万)条数据=================
1.内存Queue插入和排空数据所耗时间
 填充 10000000 条数据耗时: 9678.377046 毫秒,单条耗时: 967.8377046 纳秒
 排空 10000000 条数据耗时: 1473.416825 毫秒,单条耗时: 147.3416825 纳秒
2.持久化Queue插入和排空数据所耗时间
 填充 10000000 条数据耗时: 151177.036391 毫秒,单条耗时: 0.0151177036391 豪秒
 排空 10000000 条数据耗时: 361642.655135 毫秒,单条耗时: 36.164265513500006 豪秒

 持久化写入是内存写入的15倍,读取是245倍

可以看出写入和遍历一条都是在毫秒级别,还有千万级的数据,BDB的性能着实牛逼.而且随着数据的增多,写的时间在缩短,读的时间在增长.

 

 

更多技术文章、感悟、分享、勾搭,请用微信扫描:

基于Berkeley DB实现的持久化队列
            
    
    博客分类: java搜索引擎-爬虫-Heritrix bdbqueuejava持久化队列