基于matlab对比度和结构提取的多模态解剖图像融合实现
程序员文章站
2022-04-29 10:49:42
目录一、图像融合简介二、部分源代码三、运行结果四、matlab版本一、图像融合简介应用多模态图像的配准与融合技术,可以把不同状态的医学图像有机地结合起来,为临床诊断和治疗提供更丰富的信息。介绍了多模态...
一、图像融合简介
应用多模态图像的配准与融合技术,可以把不同状态的医学图像有机地结合起来,为临床诊断和治疗提供更丰富的信息。介绍了多模态医学图像配准与融合的概念、方法及意义。最后简单介绍了小波变换分析方法。
二、部分源代码
clear; close all; clc; warning off %% a novel multi-modality anatomical image fusionmethod based on contrast and structure extraction % f = fuseimage(i,scale) %inputs: %i - a mulyi-modal anatomical image sequence %scale - scale factor of dense sift, the default value is 16 %% load images from the folder that contain multi-modal image to be fused %i=load_images('./dataset\ct-mri\pair 1'); i=load_images('./dataset\mr-t1-mr-t2\pair 1'); %i=load_images('./dataset\mr-gad-mr-t1\pair 1'); % show source input images figure; no_of_images = size(i,4); for i = 1:no_of_images subplot(2,1,i); imshow(i(:,:,:,i)); end suptitle('source images'); %% f=fuseimage(i,16); %% output: f - the fused image f=rgb2gray(f); figure; imshow(f); function [ f ] = fuseimage(i,scale) addpath('pyramid_decomposition'); addpath('guided_filter'); addpath('dense_sift'); tic %% [h, w, c, n]=size(i); imgs=im2double(i); ia=zeros(h,w,c,n); for i=1:n ia(:,:,:,i)=enhnc(imgs(:,:,:,i)); end %% imgs_gray=zeros(h,w,n); for i=1:n imgs_gray(:,:,i)=rgb2gray(ia(:,:,:,i)); end % % %dense sift calculation dsifts=zeros(h,w,32,n, 'single'); for i=1:n img=imgs_gray(:,:,i); ext_img=img_extend(img,scale/2-1); [dsifts(:,:,:,i)] = densesift(ext_img, scale, 1); end %% %local contrast contrast_map=zeros(h,w,n); for i=1:n contrast_map(:,:,i)=sum(dsifts(:,:,:,i),3); end %winner-take-all weighted average strategy for local contrast [x, labels]=max(contrast_map,[],3); clear x; for i=1:n mono=zeros(h,w); mono(labels==i)=1; contrast_map(:,:,i)=mono; end %% structure h = [1 -1]; structure_map=zeros(h,w,n); for i=1:n structure_map(:,:,i) = abs(conv2(imgs_gray(:,:,i),h,'same')) + abs(conv2(imgs_gray(:,:,i),h','same')); %eq 13 end %winner-take-all weighted average strategy for structure [a, label]=max(structure_map,[],3); clear x; for i=1:n monoo=zeros(h,w); monoo(label==i)=1; structure_map(:,:,i)=monoo; end %% weight_map=structure_map.*contrast_map; %weight map refinement using guided filter for i=1:n weight_map(:,:,i) = fastgf(weight_map(:,:,i),12,0.25,2.5); end % normalizing weight maps % weight_map = weight_map + 10^-25; %avoids division by zero weight_map = weight_map./repmat(sum(weight_map,3),[1 1 n]); %% pyramid decomposition % create empty pyramid pyr = gaussian_pyramid(zeros(h,w,3)); nlev = length(pyr); % multiresolution blending for i = 1:n % construct pyramid from each input image % blend for b = 1:nlev w = repmat(pyrw{b},[1 1 3]); pyr{b} = pyr{b} + w .*pyri{b}; end end % reconstruct f = reconstruct_laplacian_pyramid(pyr); toc end
三、运行结果
四、matlab版本
matlab版本
2014a
以上就是基于matlab对比度和结构提取的多模态解剖图像融合实现的详细内容,更多关于matlab 多模态解剖图像融合的资料请关注其它相关文章!
上一篇: 微信小程序实现简单跑马灯效果
下一篇: 小程序实现抽奖动画