欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Flink+Kafka整合的实例

程序员文章站 2022-04-28 17:47:58
Flink+Kafka整合实例 1.使用工具Intellig IDEA新建一个maven项目,为项目命名为kafka01。 2.我的pom.xml文件配置如下。 3.在项目的目录/src/main/java在创建两个Java类,分别命名为KafkaDemo和CustomWatermarkEmitte ......

Flink+Kafka整合实例

1.使用工具Intellig IDEA新建一个maven项目,为项目命名为kafka01。

2.我的pom.xml文件配置如下。

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.hrb.lhr</groupId>
    <artifactId>kafka01</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <flink.version>1.1.4</flink.version>
        <slf4j.version>1.7.7</slf4j.version>
        <log4j.version>1.2.17</log4j.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_2.11</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_2.11</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!-- explicitly add a standard loggin framework, as Flink does not (in the future) have
           a hard dependency on one specific framework by default -->
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-log4j12</artifactId>
            <version>${slf4j.version}</version>
        </dependency>
        <dependency>
            <groupId>log4j</groupId>
            <artifactId>log4j</artifactId>
            <version>${log4j.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka-0.9_2.11</artifactId>
            <version>${flink.version}</version>
        </dependency>
    </dependencies>

</project>

3.在项目的目录/src/main/java在创建两个Java类,分别命名为KafkaDemo和CustomWatermarkEmitter,代码如下所示。

import java.util.Properties;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer09;
import org.apache.flink.streaming.util.serialization.SimpleStringSchema;


public class KafkaDeme {

        public static void main(String[] args) throws Exception {

                // set up the streaming execution environment
                final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
                //默认情况下,检查点被禁用。要启用检查点,请在StreamExecutionEnvironment上调用enableCheckpointing(n)方法,
                // 其中n是以毫秒为单位的检查点间隔。每隔5000 ms进行启动一个检查点,则下一个检查点将在上一个检查点完成后5秒钟内启动
                env.enableCheckpointing(5000);
                env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
                Properties properties = new Properties();
                properties.setProperty("bootstrap.servers", "10.192.12.106:9092");//kafka的节点的IP或者hostName,多个使用逗号分隔
                properties.setProperty("zookeeper.connect", "10.192.12.106:2181");//zookeeper的节点的IP或者hostName,多个使用逗号进行分隔
                properties.setProperty("group.id", "test-consumer-group");//flink consumer flink的消费者的group.id
                FlinkKafkaConsumer09<String> myConsumer = new FlinkKafkaConsumer09<String>("test0", new SimpleStringSchema(),
                        properties);//test0是kafka中开启的topic
                myConsumer.assignTimestampsAndWatermarks(new CustomWatermarkEmitter());
                DataStream<String> keyedStream = env.addSource(myConsumer);//将kafka生产者发来的数据进行处理,本例子我进任何处理
                keyedStream.print();//直接将从生产者接收到的数据在控制台上进行打印
                // execute program
                env.execute("Flink Streaming Java API Skeleton");

        }
import org.apache.flink.streaming.api.functions.AssignerWithPunctuatedWatermarks;
import org.apache.flink.streaming.api.watermark.Watermark;

public class CustomWatermarkEmitter implements AssignerWithPunctuatedWatermarks<String> {

    private static final long serialVersionUID = 1L;

    public long extractTimestamp(String arg0, long arg1) {
        if (null != arg0 && arg0.contains(",")) {
            String parts[] = arg0.split(",");
            return Long.parseLong(parts[0]);
        }
        return 0;
    }

    public Watermark checkAndGetNextWatermark(String arg0, long arg1) {
        if (null != arg0 && arg0.contains(",")) {
            String parts[] = arg0.split(",");
            return new Watermark(Long.parseLong(parts[0]));
        }
        return null;
    }
}

4.开启一台配置好zookeeper和kafka的Ubuntu虚拟机,输入以下命令分别开启zookeeper、kafka、topic、producer。(zookeeper和kafka的配置可参考https://www.cnblogs.com/ALittleMoreLove/p/9396745.html)

bin/zkServer.sh start
bin/kafka-server-start.sh config/server.properties
bin/kafka-topics.sh --create --zookeeper 10.192.12.106:2181 --replication-factor 1 --partitions 1 --topic test0
bin/kafka-console-producer.sh --broker-list 10.192.12.106:9092 --topic test0

5.检测Flink程序是否可以接收到来自Kafka生产者发来的数据,运行Java类KafkaDemo,在开启kafka生产者的终端下随便输入一段话,在IDEA控制台可以收到该信息,如下为kafka生产者终端和控制台。

Flink+Kafka整合的实例

Flink+Kafka整合的实例

OK,成功的接收到了来自Kafka生产者的消息^.^。