欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  后端开发

完成逻辑回归的python方法

程序员文章站 2022-04-28 14:42:44
...
这篇文章主要介绍了python实现逻辑回归的方法示例,这是机器学习课程的一个实验,整理出来共享给大家,需要的朋友可以参考学习,下来要一起看看吧。

本文实现的原理很简单,优化方法是用的梯度下降。后面有测试结果。

先来看看实现的示例代码:

# coding=utf-8
from math import exp

import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets.samples_generator import make_blobs


def sigmoid(num):
 '''

 :param num: 待计算的x
 :return: sigmoid之后的数值
 '''
 if type(num) == int or type(num) == float:
  return 1.0 / (1 + exp(-1 * num))
 else:
  raise ValueError, 'only int or float data can compute sigmoid'


class logistic():
 def init(self, x, y): 
  if type(x) == type(y) == list:
   self.x = np.array(x)
   self.y = np.array(y)
  elif type(x) == type(y) == np.ndarray:
   self.x = x
   self.y = y
  else:
   raise ValueError, 'input data error'

 def sigmoid(self, x):
  '''

  :param x: 输入向量
  :return: 对输入向量整体进行simgoid计算后的向量结果
  '''
  s = np.frompyfunc(lambda x: sigmoid(x), 1, 1)
  return s(x)

 def train_with_punish(self, alpha, errors, punish=0.0001):
  '''

  :param alpha: alpha为学习速率
  :param errors: 误差小于多少时停止迭代的阈值
  :param punish: 惩罚系数
  :param times: 最大迭代次数
  :return:
  '''
  self.punish = punish
  dimension = self.x.shape[1]
  self.theta = np.random.random(dimension)
  compute_error = 100000000
  times = 0
  while compute_error > errors:
   res = np.dot(self.x, self.theta)
   delta = self.sigmoid(res) - self.y
   self.theta = self.theta - alpha * np.dot(self.x.T, delta) - punish * self.theta # 带惩罚的梯度下降方法
   compute_error = np.sum(delta)
   times += 1

 def predict(self, x):
  '''

  :param x: 给入新的未标注的向量
  :return: 按照计算出的参数返回判定的类别
  '''
  x = np.array(x)
  if self.sigmoid(np.dot(x, self.theta)) > 0.5:
   return 1
  else:
   return 0


def test1():
 '''
 用来进行测试和画图,展现效果
 :return:
 '''
 x, y = make_blobs(n_samples=200, centers=2, n_features=2, random_state=0, center_box=(10, 20))
 x1 = []
 y1 = []
 x2 = []
 y2 = []
 for i in range(len(y)):
  if y[i] == 0:
   x1.append(x[i][0])
   y1.append(x[i][1])
  elif y[i] == 1:
   x2.append(x[i][0])
   y2.append(x[i][1])
 # 以上均为处理数据,生成出两类数据
 p = logistic(x, y)
 p.train_with_punish(alpha=0.00001, errors=0.005, punish=0.01) # 步长是0.00001,最大允许误差是0.005,惩罚系数是0.01
 x_test = np.arange(10, 20, 0.01)
 y_test = (-1 * p.theta[0] / p.theta[1]) * x_test
 plt.plot(x_test, y_test, c='g', label='logistic_line')
 plt.scatter(x1, y1, c='r', label='positive')
 plt.scatter(x2, y2, c='b', label='negative')
 plt.legend(loc=2)
 plt.title('punish value = ' + p.punish.str())
 plt.show()


if name == 'main':
 test1()

运行结果如下图

完成逻辑回归的python方法

总结

【相关推荐】

1. Python免费视频教程

2. Python基础入门教程

3. Python面向对象视频教程

以上就是完成逻辑回归的python方法的详细内容,更多请关注其它相关文章!

相关标签: python,逻辑回归