欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

机器学习 LogsticRegression 正则化(matlab实现)

程序员文章站 2022-04-28 13:28:02
...

仍然使用之前的根据学生两学期分数,预测录取情况

主程序:

X = load('ex4x.dat');
y = load('ex4y.dat');
plotData(X,y);
[m,n] = size(X);
X = [ones(m,1),X];
lambda = 1;
%[cost,grad] = costFunction(theta,X,y,lambda);
%fprintf('Cost at initial theta (zeros): %f\n', cost);
init_theta = zeros(n+1,1);
options = optimset('GradObj', 'on', 'MaxIter', 400);
f = @(t)(costFunction(t, X, y, lambda));
[theta, J, exit_flag] = fminunc(f, init_theta, options);

% Plot Boundary
plotDecisionBoundary(theta, X, y);
hold on;
title(sprintf('lambda = %g', lambda))

% Labels and Legend
xlabel('Microchip Test 1')
ylabel('Microchip Test 2')

legend('y = 1', 'y = 0', 'Decision boundary')
hold off;

% Compute accuracy on our training set
p = predict(theta, X);

fprintf('Train Accuracy: %f\n', mean(double(p == y)) * 100);

画原始的两学期分数分布图:

function plotData(X, y)
    figure;
    hold on;
    pos = find(y == 1);
    neg = find(y == 0);
    plot(X(pos, 1), X(pos, 2), 'k+', 'LineWidth', 2, 'MarkerSize', 7);
    plot(X(neg, 1), X(neg, 2), 'ko', 'MarkerFaceColor', 'y', 'MarkerSize', 7);
    legend('y == 1','y == 0');
    hold off;
end

机器学习 LogsticRegression 正则化(matlab实现)

代价函数:

机器学习 LogsticRegression 正则化(matlab实现)

梯度(正则化,theta0不参与正则化):

机器学习 LogsticRegression 正则化(matlab实现)

function [J, grad] = costFunction(theta,X,y,lambda)
  m = length(y);
  %grad = zeros(m,1);
  sig = inline('1./(1+exp(-z))');
  grad = zeros(size(theta));
  J = 1/m*(sum(-y.*log(sig(X*theta))-(1-y).*log(1-sig(X*theta)))) +lambda/(2*m)*sum(theta(2:size(theta)).^2);%计算代价
  for j = 1:size(theta)
    if j == 1
      grad(j) = 1/m*sum((sig(X*theta)-y)'*X(:,j));
    else
      grad(j) = 1/m*sum((sig(X*theta)-y)'*X(:,j)) + lambda/m*theta(j);
    end
  end
end
  


画图里面包含了各种情况(这里只是用了最简单的那种):


function plotDecisionBoundary(theta, X, y)
%PLOTDECISIONBOUNDARY Plots the data points X and y into a new figure with
%the decision boundary defined by theta
%   PLOTDECISIONBOUNDARY(theta, X,y) plots the data points with + for the 
%   positive examples and o for the negative examples. X is assumed to be 
%   a either 
%   1) Mx3 matrix, where the first column is an all-ones column for the 
%      intercept.
%   2) MxN, N>3 matrix, where the first column is all-ones

    % Plot Data
    plotData(X(:,2:3), y);
    hold on

    if size(X, 2) <= 3
        % Only need 2 points to define a line, so choose two endpoints
        plot_x = [min(X(:,2))-2,  max(X(:,2))+2];

        % Calculate the decision boundary line
        plot_y = (-1./theta(3)).*(theta(2).*plot_x + theta(1));

        % Plot, and adjust axes for better viewing
        plot(plot_x, plot_y)

        % Legend, specific for the exercise
        legend('Admitted', 'Not admitted', 'Decision Boundary')
        axis([10, 70, 30, 100])
    else
        % Here is the grid range
        u = linspace(-1, 1.5, 50);
        v = linspace(-1, 1.5, 50);

        z = zeros(length(u), length(v));
        % Evaluate z = theta*x over the grid
        for i = 1:length(u)
            for j = 1:length(v)
                z(i,j) = mapFeature(u(i), v(j))*theta;
            end
        end
        z = z'; % important to transpose z before calling contour

        % Plot z = 0
        % Notice you need to specify the range [0, 0]
        contour(u, v, z, [0, 0], 'LineWidth', 2)
    end
    hold off

end

机器学习 LogsticRegression 正则化(matlab实现)

预测:

function p = predict(theta, X)
    sig = inline('1./(1+exp(-z))');
    p = sig(X * theta) >= 0.5;
end

参考博客:点击打开链接

数据源:点击打开链接