欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

BZOJ5118: Fib数列2(二次剩余)

程序员文章站 2022-04-28 10:38:34
题意 "题目链接" 题目链接 一种做法是直接用欧拉降幂算出$2^p \pmod{p 1}$然后矩阵快速幂。 但是今天学习了一下二次剩余,也可以用通项公式+二次剩余做。 就是我们猜想$5$在这个模数下有二次剩余,拉个板子发现真的有。 然求出来直接做就行了 cpp include define Pair ......

题意

题目链接

题目链接

一种做法是直接用欧拉降幂算出\(2^p \pmod{p - 1}\)然后矩阵快速幂。

但是今天学习了一下二次剩余,也可以用通项公式+二次剩余做。

就是我们猜想\(5\)在这个模数下有二次剩余,拉个板子发现真的有。

然求出来直接做就行了

#include<bits/stdc++.h> 
#define pair pair<int, int>
#define mp(x, y) make_pair(x, y)
#define fi first
#define se second
#define int long long 
#define ll long long 
#define ull unsigned long long 
#define fin(x) {freopen(#x".in","r",stdin);}
#define fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int maxn = 1e6 + 10, mod = 1125899839733759, inf = 1e9 + 10, inv2 = (mod + 1ll) >> 1ll;
const double eps = 1e-9;
template <typename a, typename b> inline bool chmin(a &a, b b){if(a > b) {a = b; return 1;} return 0;}
template <typename a, typename b> inline bool chmax(a &a, b b){if(a < b) {a = b; return 1;} return 0;}
template <typename a, typename b> inline ll add(a x, b y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename a, typename b> inline void add2(a &x, b y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename a, typename b> inline ll mul(a x, b y) {return 1ll * x * y % mod;}
template <typename a, typename b> inline void mul2(a &x, b y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename a> inline void debug(a a){cout << a << '\n';}
template <typename a> inline ll sqr(a x){return 1ll * x * x;}
template <typename a> a inv(a x) {return fp(x, mod - 2);}
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
namespace tworemain {
int fmul(int a, int p, int mod = mod) {
    int base = 0;
    while(p) {
        if(p & 1) base = (base + a) % mod;
        a = (a + a) % mod; p >>= 1;
    }
    return base;
}
int fp(int a, int p, int mod = mod) {
    int base = 1;
    while(p) {
        if(p & 1) base = fmul(base, a, mod);
        p >>= 1; a = fmul(a, a, mod);
    }
    return base;
}
int f(int x) {
    return fp(x, (mod - 1) >> 1);
}
struct mycomplex {
    int a, b;
    mutable int cn;
    mycomplex operator * (const mycomplex &rhs)  {
        return {
            add(fmul(a, rhs.a, mod), fmul(cn, fmul(b, rhs.b, mod), mod)),
            add(fmul(a, rhs.b, mod), fmul(b, rhs.a, mod)),
            cn
        };
    }
};
mycomplex fp(mycomplex a, int p) {
    mycomplex base = {1, 0, a.cn};
    while(p) {
        if(p & 1) base = base * a;
        a = a * a; p >>= 1;
    }
    return base;
}
int twosqrt(int n) {
    if(f(n) == mod - 1) return -1;
    if(f(n) ==  0) return  0;
    int a = -1, val = -1;
    while(val == -1) {
        a = rand() << 15 | rand();
        val = add(mul(a, a), -n);
        if(f(val) != mod - 1) val = -1;
    }
    return fp({a, 1, val}, (mod + 1) / 2).a;
}
}
using namespace tworemain;
signed main() {
    int rm5 = twosqrt(5), inv5 = fp(rm5, mod - 2);
    int a = fmul(add(1, rm5), inv2),    
        b = fmul(add(1, -rm5 + mod), inv2);
    int t = read();
    while(t--) {
        int n = read(); int pw2 = fp(2, n, mod - 1);
        int x = fp(a, pw2), y = fp(b, pw2);
        cout << fmul(x - y + mod, inv5) << '\n';
    }
    return 0;
}
/*
2
2
124124
*/