欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

拉勾网爬取全国python职位并数据分析薪资,工作经验,学历等信息

程序员文章站 2022-04-28 09:04:49
...
  1. 首先前往拉勾网“爬虫”职位相关页面
  2. 确定网页的加载方式是JavaScript加载
  3. 通过谷歌浏览器开发者工具分析和寻找网页的真实请求,确定真实数据在position.Ajax开头的链接里,请求方式是POST
  4. 使用requests的post方法获取数据,发现并没有返回想要的数据,说明需要加上headers和每隔多长时间爬取

    拉勾网爬取全国python职位并数据分析薪资,工作经验,学历等信息

    我们可以看到拉勾网列表页的信息一般js加载的都在xhr和js中,通过发送ajax加载POST请求,获取页面信息。拉勾网爬取全国python职位并数据分析薪资,工作经验,学历等信息
  5. 这个是ajax的头信息,通过Form Data中的的信息获取页面
  6. 下面是scrapy爬虫的 代码部分
import scrapy
import json
from lagou.items import LagouItem
class LagoupositionSpider(scrapy.Spider):
    name = 'lagouposition'
    allowed_domains = ['lagou.com']
    kd = input('请输入你要搜索的职位信息:')
    ct =input('请输入要搜索的城市信息')
    page=1
    start_urls = ["https://www.lagou.com/jobs/list_"+str(kd)+"&city="+str(ct)]
    headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36",
             'Referer': 'https://www.lagou.com/jobs/list_'+str(kd)+'?labelWords=&fromSearch=true&suginput=',
             'Cookie':' _ga=GA1.2.1036647455.1532143907; user_trace_token=20180721113217-aacd6291-8c96-11e8-a020-525400f775ce; LGUID=20180721113217-aacd667e-8c96-11e8-a020-525400f775ce; index_location_city=%E5%8C%97%E4%BA%AC; _gid=GA1.2.1320510576.1532272161; WEBTJ-ID=20180723084204-164c4960832159-09bf89fcd2732e-5e442e19-1049088-164c496083348; JSESSIONID=ABAAABAABEEAAJAC7D58B57D1CAE4616ED47AACF945615E; _gat=1; LGSID=20180723203627-04b27de6-8e75-11e8-9ee6-5254005c3644; PRE_UTM=; PRE_HOST=www.baidu.com; PRE_SITE=https%3A%2F%2Fwww.baidu.com%2Flink%3Furl%3DYhfCtaCVlOHCdncJxMCMMS3PB1wGlwfw9Yt2c_FXqgu%26wd%3D%26eqid%3D8f013ed00002f4c7000000035b55cbc4; PRE_LAND=https%3A%2F%2Fwww.lagou.com%2F; Hm_lvt_4233e74dff0ae5bd0a3d81c6ccf756e6=1532306722,1532306725,1532306732,1532349358; SEARCH_ID=cdd7822cf3e2429fbc654720657d5873; LGRID=20180723203743-3221dec8-8e75-11e8-a35a-525400f775ce; Hm_lpvt_4233e74dff0ae5bd0a3d81c6ccf756e6=1532349434; TG-TRACK-CODE=search_code'
             }


    def parse(self, response):
        with open('lagou.html','w') as f:
            f.write(response.text)
        url="https://www.lagou.com/jobs/positionAjax.json?needAddtionalResult=false"
        formdata={'first':'true','kd':str(self.kd),'pn':'1','city':str(self.ct)}
        yield scrapy.FormRequest(url,formdata=formdata,callback=self.parse_detail,headers=self.headers)

    def parse_detail(self,response):
        text=json.loads(response.text)
        res=[]
        try:
            res = text["content"]["positionResult"]["result"]
            print(res)
        except:
            pass
        if len(res)>0:
            item = LagouItem()
            for position in res:
                try:
                    item['title']=position['positionName']
                    item['education']=position['education']
                    item['company']=position['companyFullName']
                    item['experience']=position['workYear']
                    item['location']=position['city']
                    item['salary'] = position['salary']
                    print(item)
                except:
                    pass
                yield item
            self.page+=1
            url='https://www.lagou.com/jobs/positionAjax.json?needAddtionalResult=false
            formdata={'first':'false','kd':str(self.kd),'pn':str(self.page),'city':str(self.ct)}
            print('===========================',formdata)
            yield scrapy.FormRequest(url, callback=self.parse_detail, formdata=formdata,headers=self.headers)
        else:
            print("爬虫结束了!")

注意拉钩网有反爬措施, 我们在Formreqest提交POST请求消息必须携带kd等键值对,在setting中也许设置

DOWNLOAD_DELAY = 20
设置爬取时间
ROBOTSTXT_OBEY = False
是否遵循发爬虫协议
DEFAULT_REQUEST_HEADERS = {
    'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
    'Accept-Language': 'zh-CN,zh;q=0.8',
    'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8',
    'Host': 'www.lagou.com',
    'Origin': 'https://www.lagou.com',
    'Referer': 'https://www.lagou.com/jobs',
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.113 Safari/537.36',
    'X-Anit-Forge-Code': '0',
    'X-Anit-Forge-Token': 'None',
    'X-Requested-With': 'XMLHttpRequest'
}
请求头信息headers

 

接下来就是在items中设置爬取信息的字段

import scrapy


class LagouItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    # pass

    education= scrapy.Field()
    company= scrapy.Field()
    experience= scrapy.Field()
    location= scrapy.Field()
    salary= scrapy.Field()
    title= scrapy.Field()

在Pipeline.py文件中设置保存爬取文件的格式等

import json
class LagouPipeline(object):
    def open_spider(self,spider):
        self.file=open('pythonposition.json','w',encoding='utf-8')
    def process_item(self, item, spider):
        python_dict=dict(item)
        content=json.dumps(python_dict,ensure_ascii=False)+'\n'
        self.file.write(content)
        return item
    def close_spider(self,spider):
        self.file.close()

注意一定要把setting中的ITEM_PIPELINES解注释,接下来就是跑起我们的项目,通过input输入想要爬取的职位和城市,

拉勾网爬取全国python职位并数据分析薪资,工作经验,学历等信息

拉勾网爬取全国python职位并数据分析薪资,工作经验,学历等信息

上面就是爬取到的信息总共是855条招聘消息,接下来就是用jumpter-notebook打开爬取到的csv文件用pandas,numpy,和mupltlib进行分析

import pandas as pd
import numpy as np
import seaborn as sns
lagou=pd.read_csv('./examples/lagou.csv')
lagou.info()
#查看缺失值情况

拉勾网爬取全国python职位并数据分析薪资,工作经验,学历等信息

通过读取文件并显示出855条招聘信息是否有缺失值

city=lagou['location']
city=pd.DataFrame(city.unique())
city

通过上面可以看到招聘python职位的城市,总共有38城市

education=lagou['education']
education=pd.DataFrame(education.unique())
lagou['education'] = lagou['education'].replace('不限','unlimited')
lagou['education'] = lagou['education'].replace('大专','junior')
lagou['education'] = lagou['education'].replace('本科','regular')
lagou['education'] = lagou['education'].replace('硕士','master')
lagou['education'] = lagou['education'].replace('博士','doctor')
#seaborn不支持中文需将对应的中文替换
import seaborn as sns
sns.set_style('whitegrid')
sns.countplot(x='education',data=lagou,palette='Greens_d')

 

拉勾网爬取全国python职位并数据分析薪资,工作经验,学历等信息

通过上图可以看到大多数的Python职位招聘还是本科学历为主

experience=lagou['experience']
experience=pd.DataFrame(experience.unique())
lagou['experience'] = lagou['experience'].replace('不限','unlimited')
lagou['experience'] = lagou['experience'].replace('3-5年','3-5')
lagou['experience'] = lagou['experience'].replace('1-3年','1-3')
lagou['experience'] = lagou['experience'].replace('5-10年','5-10')
lagou['experience'] = lagou['experience'].replace('1年以下','<1')
lagou['experience'] = lagou['experience'].replace('应届毕业生','intern')
experience
sns.countplot(x="experience", data=lagou,palette="Blues_d")

拉勾网爬取全国python职位并数据分析薪资,工作经验,学历等信息

上图是招聘的工作经验的人数分布图,可以看到3-5年的Python工程师比较抢手,其次就是1-3年工作经验的

import matplotlib.pyplot as plt
%matplotlib inline
f, ax1= plt.subplots(figsize=(20,20))
sns.countplot(y='salary', data=lagou, ax=ax1)
ax1.set_title('Python salary distribute ',fontsize=15)
#薪资分布
ax1.set_xlabel('salary')
#薪资
ax1.set_ylabel('level')             
plt.show()

 

同过下图可以看到拉勾网上的pyhong工程师薪资待遇,其中待遇重要分布在10-40K之间,其中给出15-30K工资待遇的企业最多

Python工程师还是很有前景的,拉勾网爬取全国python职位并数据分析薪资,工作经验,学历等信息

相关标签: 数据分析 爬虫