欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

d6

程序员文章站 2022-04-27 23:46:21
...
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

from tensorflow.contrib.slim.python.slim.nets.inception_v3 import inception_v3_base


FLAGS = tf.app.flags.FLAGS

tf.app.flags.DEFINE_integer("is_train", 1, "指定程序是预测还是训练")


def full_connected():

    # 获取真实的数据
    mnist = input_data.read_data_sets("./data/mnist/input_data/", one_hot=True)

    # 1、建立数据的占位符 x [None, 784]    y_true [None, 10]
    with tf.variable_scope("data"):
        x = tf.placeholder(tf.float32, [None, 784])

        y_true = tf.placeholder(tf.int32, [None, 10])

    # 2、建立一个全连接层的神经网络 w [784, 10]   b [10]
    with tf.variable_scope("fc_model"):
        # 随机初始化权重和偏置
        weight = tf.Variable(tf.random_normal([784, 10], mean=0.0, stddev=1.0), name="w")

        bias = tf.Variable(tf.constant(0.0, shape=[10]))

        # 预测None个样本的输出结果matrix [None, 784]* [784, 10] + [10] = [None, 10]
        y_predict = tf.matmul(x, weight) + bias

    # 3、求出所有样本的损失,然后求平均值
    with tf.variable_scope("soft_cross"):

        # 求平均交叉熵损失
        loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_predict))

    # 4、梯度下降求出损失
    with tf.variable_scope("optimizer"):

        train_op = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

    # 5、计算准确率
    with tf.variable_scope("acc"):

        equal_list = tf.equal(tf.argmax(y_true, 1), tf.argmax(y_predict, 1))

        # equal_list  None个样本   [1, 0, 1, 0, 1, 1,..........]
        accuracy = tf.reduce_mean(tf.cast(equal_list, tf.float32))

    # 收集变量 单个数字值收集
    tf.summary.scalar("losses", loss)
    tf.summary.scalar("acc", accuracy)

    # 高纬度变量收集
    tf.summary.histogram("weightes", weight)
    tf.summary.histogram("biases", bias)

    # 定义一个初始化变量的op
    init_op = tf.global_variables_initializer()

    # 定义一个合并变量de op
    merged = tf.summary.merge_all()

    # 创建一个saver
    saver = tf.train.Saver()

    # 开启会话去训练
    with tf.Session() as sess:
        # 初始化变量
        sess.run(init_op)

        # 建立events文件,然后写入
        filewriter = tf.summary.FileWriter("./tmp/summary/test/", graph=sess.graph)

        if FLAGS.is_train == 1:

            # 迭代步数去训练,更新参数预测
            for i in range(2000):

                # 取出真实存在的特征值和目标值
                mnist_x, mnist_y = mnist.train.next_batch(50)

                # 运行train_op训练
                sess.run(train_op, feed_dict={x: mnist_x, y_true: mnist_y})

                # 写入每步训练的值
                summary = sess.run(merged, feed_dict={x: mnist_x, y_true: mnist_y})

                filewriter.add_summary(summary, i)

                print("训练第%d步,准确率为:%f" % (i, sess.run(accuracy, feed_dict={x: mnist_x, y_true: mnist_y})))

            # 保存模型
            saver.save(sess, "./tmp/ckpt/fc_model")
        else:
            # 加载模型
            saver.restore(sess, "./tmp/ckpt/fc_model")

            # 如果是0,做出预测
            for i in range(100):

                # 每次测试一张图片 [0,0,0,0,0,1,0,0,0,0]
                x_test, y_test = mnist.test.next_batch(1)

                print("第%d张图片,手写数字图片目标是:%d, 预测结果是:%d" % (
                    i,
                    tf.argmax(y_test, 1).eval(),
                    tf.argmax(sess.run(y_predict, feed_dict={x: x_test, y_true: y_test}), 1).eval()
                ))
    return None


# 定义一个初始化权重的函数
def weight_variables(shape):
    w = tf.Variable(tf.random_normal(shape=shape, mean=0.0, stddev=1.0))
    return w


# 定义一个初始化偏置的函数
def bias_variables(shape):
    b = tf.Variable(tf.constant(0.0, shape=shape))
    return b


def model():
    """
    自定义的卷积模型
    :return:
    """
    # 1、准备数据的占位符 x [None, 784]  y_true [None, 10]
    with tf.variable_scope("data"):
        x = tf.placeholder(tf.float32, [None, 784])

        y_true = tf.placeholder(tf.int32, [None, 10])

    # 2、一卷积层 卷积: 5*5*1,32个,strides=1 **: tf.nn.relu 池化
    with tf.variable_scope("conv1"):
        # 随机初始化权重, 偏置[32]
        w_conv1 = weight_variables([5, 5, 1, 32])

        b_conv1 = bias_variables([32])

        # 对x进行形状的改变[None, 784]  [None, 28, 28, 1]
        x_reshape = tf.reshape(x, [-1, 28, 28, 1])

        # [None, 28, 28, 1]-----> [None, 28, 28, 32]
        x_relu1 = tf.nn.relu(tf.nn.conv2d(x_reshape, w_conv1, strides=[1, 1, 1, 1], padding="SAME") + b_conv1)

        # 池化 2*2 ,strides2 [None, 28, 28, 32]---->[None, 14, 14, 32]
        x_pool1 = tf.nn.max_pool(x_relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")

    # 3、二卷积层卷积: 5*5*32,64个filter,strides=1 **: tf.nn.relu 池化:
    with tf.variable_scope("conv2"):
        # 随机初始化权重,  权重:[5, 5, 32, 64]  偏置[64]
        w_conv2 = weight_variables([5, 5, 32, 64])

        b_conv2 = bias_variables([64])

        # 卷积,**,池化计算
        # [None, 14, 14, 32]-----> [None, 14, 14, 64]
        x_relu2 = tf.nn.relu(tf.nn.conv2d(x_pool1, w_conv2, strides=[1, 1, 1, 1], padding="SAME") + b_conv2)

        # 池化 2*2, strides 2, [None, 14, 14, 64]---->[None, 7, 7, 64]
        x_pool2 = tf.nn.max_pool(x_relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")

    # 4、全连接层 [None, 7, 7, 64]--->[None, 7*7*64]*[7*7*64, 10]+ [10] =[None, 10]
    with tf.variable_scope("conv2"):

        # 随机初始化权重和偏置
        w_fc = weight_variables([7 * 7 * 64, 10])

        b_fc = bias_variables([10])

        # 修改形状 [None, 7, 7, 64] --->None, 7*7*64]
        x_fc_reshape = tf.reshape(x_pool2, [-1, 7 * 7 * 64])

        # 进行矩阵运算得出每个样本的10个结果
        y_predict = tf.matmul(x_fc_reshape, w_fc) + b_fc

    return x, y_true, y_predict


def conv_fc():
    # 获取真实的数据
    mnist = input_data.read_data_sets("./data/mnist/input_data/", one_hot=True)

    # 定义模型,得出输出
    x, y_true, y_predict = model()

    # 进行交叉熵损失计算
    # 3、求出所有样本的损失,然后求平均值
    with tf.variable_scope("soft_cross"):
        # 求平均交叉熵损失# 求平均交叉熵损失
        loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_predict))

    # 4、梯度下降求出损失
    with tf.variable_scope("optimizer"):
        train_op = tf.train.GradientDescentOptimizer(0.0001).minimize(loss)

    # 5、计算准确率
    with tf.variable_scope("acc"):
        equal_list = tf.equal(tf.argmax(y_true, 1), tf.argmax(y_predict, 1))

        # equal_list  None个样本   [1, 0, 1, 0, 1, 1,..........]
        accuracy = tf.reduce_mean(tf.cast(equal_list, tf.float32))

    # 定义一个初始化变量的op
    init_op = tf.global_variables_initializer()

    # 开启回话运行
    with tf.Session() as sess:
        sess.run(init_op)

        # 循环去训练
        for i in range(1000):

            # 取出真实存在的特征值和目标值
            mnist_x, mnist_y = mnist.train.next_batch(50)

            # 运行train_op训练
            sess.run(train_op, feed_dict={x: mnist_x, y_true: mnist_y})

            print("训练第%d步,准确率为:%f" % (i, sess.run(accuracy, feed_dict={x: mnist_x, y_true: mnist_y})))


    return None


if __name__ == "__main__":
    conv_fc()