深入理解Android开发RectF和Rect之间的区别
1. 联系:
都是用于表示坐标系中的一块矩形区域,并可以对其做一些简单操作。这块矩形区域,需要用左上和右下两个坐标点表示。
2. 区别:
(1).精度不一样。Rect是使用int类型作为数值,RectF是使用float类型作为数值。
(2).两个类型提供的方法也不是完全一致。
3. 代码部分
package com.pansoft.viewdemo.view; import android.content.Context; import android.graphics.Canvas; import android.graphics.Color; import android.graphics.Paint; import android.graphics.Paint.Style; import android.graphics.Rect; import android.graphics.RectF; import android.view.View; /** 自定义View **/ public class MyView extends View { /** 上下文 */ private Context mContext; /** 画笔 */ private Paint mPaint; public MyView(Context context) { super(context); mContext = context; } @Override protected void onDraw(Canvas canvas) { super.onDraw(canvas); mPaint = new Paint(); // 设置画笔的颜色 mPaint.setColor(Color.RED); // 设置填充颜色 mPaint.setStyle(Style.FILL); RectF rect = new RectF(10, 10, 100, 100); // Rect rect2 = new Rect(10, 10, 100, 100); canvas.drawRect(rect, mPaint); } }
RectF和Rect基础
final TextView textView = new TextView(this); textView.setText("显示Rect存储坐标数据"); /** * 设置TextView的宽度和高度,最后计算TextView的左上角和右下角的坐标 */ textView.setLayoutParams(new ViewGroup.LayoutParams(400, 400)); textView.setBackgroundColor(Color.parseColor("#00BFFF")); textView.setGravity(Gravity.CENTER); textView.setOnClickListener(new View.OnClickListener() { @Override public void onClick(View v) { int top = v.getTop(); int left = v.getLeft(); int right = v.getRight(); int bottom = v.getBottom(); /** * 将TextView相对父控件的坐标保存在Rect对象 */ mRect.left = left; mRect.right = right; mRect.top = top; mRect.bottom = bottom; textView.setText(mRect.toShortString()); } });
final Button button = new Button(this); /** * 设置button的宽度和高度,最后计算矩形局域的宽和高 */ ViewGroup.MarginLayoutParams params=new ViewGroup.MarginLayoutParams(800, 300); /** * 设置button的margin属性值 */ params.setMargins(100,DensityUtil.dip2px(this,100),100,100); button.setLayoutParams(params); button.setText("计算Rect坐标"); button.setBackgroundColor(Color.parseColor("#7FFFAA")); button.setOnClickListener(new View.OnClickListener() { @Override public void onClick(View v) { int top = v.getTop(); int left = v.getLeft(); int right = v.getRight(); int bottom = v.getBottom(); /** * 将TextView相对父控件的坐标保存在Rect对象 */ mRect.left = left; mRect.right = right; mRect.top = top; mRect.bottom = bottom; button.setText("宽度:"+mRect.width()+"\n"+"高度:"+mRect.height()); } });
final Button anim_btn =new Button(this); /** * 设置button的宽度和高度 */ params=new ViewGroup.MarginLayoutParams(800, 300); /** * 设置button的margin属性值,计算矩形局域的中心点坐标 */ params.setMargins(100,DensityUtil.dip2px(this,100),100,100); anim_btn.setLayoutParams(params); anim_btn.setText("计算Rect坐标"); anim_btn.setBackgroundColor(Color.parseColor("#DDA0DD")); anim_btn.setGravity(Gravity.RIGHT); anim_btn.setOnClickListener(new View.OnClickListener() { @Override public void onClick(View v) { int top = v.getTop(); int left = v.getLeft(); int right = v.getRight(); int bottom = v.getBottom(); /** * 将TextView相对父控件的坐标保存在Rect对象 */ mRect.left = left; mRect.right = right; mRect.top = top; mRect.bottom = bottom; anim_btn.setText("水平中心点:"+mRect.centerX()+"\n垂直中心点:"+mRect.centerY()); } });
正是因为每一个矩形局域包含着left、top、right和bottom四个顶点坐标,getLeft()、getTop()、getRight()和getBottom()属于View声明的方法,因此每一个View子类或者控件继承上述方法,Rect或RectF类似一个工具类,封装四个顶点坐标的计算关系,使用getLeft()、getTop()、getRight()和getBottom()需要注意两个问题:
第一个问题:getLeft()、getTop()、getRight()和getBottom()计算相对其父容器的位置
第二个问题:getLeft()、getTop()、getRight()和getBottom()计算结果为0,是因为当前View子类或控件没有绘制完成。解决办法,onClick方法点击的时候计算或者使用线程的延时计算
/** * 延时获取控件相对父容器的left、top、right、bottom坐标,否则为0 */ new Thread(new Runnable() { @Override public void run() { try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } saveCoordinateToRect(); } }).start();
RectF和Rect深入
Rect是一个final类,不属于被继承,实现Parcelable接口执行序列化,声明public作用域的四个整型属性:left、top、right和bottom,用来记录View矩形局域的四个顶点坐标。
public Rect() {}
1、创建一个空的Rect对象,left、top、right和bottom的默认值为0
public Rect(int left, int top, int right, int bottom) { this.left = left; this.top = top; this.right = right; this.bottom = bottom; }
2、创建一个指定坐标值的Rect对象,left、top、right和bottom为指定值
public Rect(Rect r) { if (r == null) { left = top = right = bottom = 0; } else { left = r.left; top = r.top; right = r.right; bottom = r.bottom; } }
3、使用已知的Rect,创建一个新的Rect对象,left、top、right和bottom为已知的Rect包含的值
@Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Rect r = (Rect) o; return left == r.left && top == r.top && right == r.right && bottom == r.bottom; }
4、判断当前Rect与指定的o是否同一个,相同的条件:属于同一个对象或者两者left、top、right或bottom属性值一样
@Override public int hashCode() { int result = left; result = 31 * result + top; result = 31 * result + right; result = 31 * result + bottom; return result; }
5、计算Rect属性值的散列码
@Override public String toString() { StringBuilder sb = new StringBuilder(32); sb.append("Rect("); sb.append(left); sb.append(", "); sb.append(top); sb.append(" - "); sb.append(right); sb.append(", "); sb.append(bottom); sb.append(")"); return sb.toString(); }
6、以Rect(left,top-right,bottom)的格式返回矩形四个坐标值
public String toShortString(StringBuilder sb) { sb.setLength(0); sb.append('['); sb.append(left); sb.append(','); sb.append(top); sb.append("]["); sb.append(right); sb.append(','); sb.append(bottom); sb.append(']'); return sb.toString(); }
7、以[left,top] [right,bottom]的格式返回矩形四个坐标值,即矩形区域左上角和右下角坐标
public String toShortString() { return toShortString(new StringBuilder(32)); }
8、以[left,top] [right,bottom]的格式返回矩形四个坐标值,即矩形区域左上角和右下角坐标,和上述方法一样
public String flattenToString() { StringBuilder sb = new StringBuilder(32); // WARNING: Do not change the format of this string, it must be // preserved because Rects are saved in this flattened format. sb.append(left); sb.append(' '); sb.append(top); sb.append(' '); sb.append(right); sb.append(' '); sb.append(bottom); return sb.toString(); }
9、以left top right bottom的格式返回矩形四个坐标值,即平铺的格式,比如:0 0 400 400或 100 100 800 300
public static Rect unflattenFromString(String str) { Matcher matcher = UnflattenHelper.getMatcher(str); if (!matcher.matches()) { return null; } return new Rect(Integer.parseInt(matcher.group(1)), Integer.parseInt(matcher.group(2)), Integer.parseInt(matcher.group(3)), Integer.parseInt(matcher.group(4))); }
10、给定一个平铺格式的字符串,比如:0 0 400 400,判断是否合法,然后转换为一个Rect对象
public void printShortString(PrintWriter pw) { pw.print('['); pw.print(left); pw.print(','); pw.print(top); pw.print("]["); pw.print(right); pw.print(','); pw.print(bottom); pw.print(']'); }
11、将Rect包含的属性值以[left,top] [right,bottom]的格式写入给定的PrintWriter流中
public final boolean isEmpty() { return left >= right || top >= bottom; }
12、判断Rect是否一个空对象,即包含的属性值是否不为0
public final int width() { return right - left; }
13、计算矩形区域的宽度
public final int height() { return bottom - top; }
14、计算矩形区域的高度
public final int centerX() { return (left + right) >> 1; }
15、计算矩形区域的水平中心点,计算结果为分数则返回最接近的整型数,例如:水平中心点400
public final int centerY() { return (top + bottom) >> 1; }
16、计算矩形区域的垂直中心点,计算结果为分数则返回最接近的整型数,例如:垂直中心点850
public final float exactCenterX() { return (left + right) * 0.5f; }
17、计算矩形区域的水平中心点,返回结果float类型,例如:水平中心点400.0
public final float exactCenterY() { return (top + bottom) * 0.5f; }
18、计算矩形区域的垂直中心点,返回结果float类型,例如:垂直中心点850.0
public void setEmpty() { left = right = top = bottom = 0; }
19、将Rect对象包含的属性值设置为0
public void set(int left, int top, int right, int bottom) { this.left = left; this.top = top; this.right = right; this.bottom = bottom; }
20、将Rect的属性值设置为指定的值
public void set(Rect src) { this.left = src.left; this.top = src.top; this.right = src.right; this.bottom = src.bottom; }
21、复制指定的Rect对象包含的属性值
public void offset(int dx, int dy) { left += dx; top += dy; right += dx; bottom += dy; }
22、在当前矩形区域的水平方向、垂直方向分别增加dx、dy距离,即扩展
public void offsetTo(int newLeft, int newTop) { right += newLeft - left; bottom += newTop - top; left = newLeft; top = newTop; }
23、在当前矩形区域的水平方向、垂直方向分别偏移dx、dy距离,即水平平移dx、垂直平移dy
public void inset(int dx, int dy) { left += dx; top += dy; right -= dx; bottom -= dy; }
24、在当前矩形区域的水平方向、垂直方向分别减少dx、dy距离,即缩小
public boolean contains(int x, int y) { return left < right && top < bottom // check for empty first && x >= left && x < right && y >= top && y < bottom; }
25、计算指定的坐标(x,y)是否包含在矩形区域范围内,包含返回true,否则返回false
public boolean contains(int left, int top, int right, int bottom) { // check for empty first return this.left < this.right && this.top < this.bottom // now check for containment && this.left <= left && this.top <= top && this.right >= right && this.bottom >= bottom; }
26、计算指定的left、top、right、bottom顶点是否包含在矩形区域范围内,包含返回true,否则返回false
public boolean contains(Rect r) { // check for empty first return this.left < this.right && this.top < this.bottom // now check for containment && left <= r.left && top <= r.top && right >= r.right && bottom >= r.bottom; }
27、计算指定的Rect是否包含在矩形区域范围内,包含返回true,否则返回false
public boolean intersect(int left, int top, int right, int bottom) { if (this.left < right && left < this.right && this.top < bottom && top < this.bottom) { if (this.left < left) this.left = left; if (this.top < top) this.top = top; if (this.right > right) this.right = right; if (this.bottom > bottom) this.bottom = bottom; return true; } return false; }
28、计算当前Rect与指定的left、top、right、bottom顶点是否存在交集区域,存在返回true并且返回指定坐标,否则返回false
public boolean intersect(Rect r) { return intersect(r.left, r.top, r.right, r.bottom); }
29、计算当前Rect与指定的Rect是否存在交集区域,存在返回true并且返回指定坐标,否则返回false
public boolean setIntersect(Rect a, Rect b) { if (a.left < b.right && b.left < a.right && a.top < b.bottom && b.top < a.bottom) { left = Math.max(a.left, b.left); top = Math.max(a.top, b.top); right = Math.min(a.right, b.right); bottom = Math.min(a.bottom, b.bottom); return true; } return false; }
30、计算指定的a、b是否存在交集区域,存在返回true并且返回最大坐标,否则返回false
public boolean intersects(int left, int top, int right, int bottom) { return this.left < right && left < this.right && this.top < bottom && top < this.bottom; }
31、计算当前Rect与指定的left、top、right、bottom顶点是否存在交集区域,存在返回true并且不返回指定坐标,否则返回false
public static boolean intersects(Rect a, Rect b) { return a.left < b.right && b.left < a.right && a.top < b.bottom && b.top < a.bottom; }
32、计算指定的a、b是否存在交集区域,存在返回true并且不返回最大坐标,否则返回false
public void union(int left, int top, int right, int bottom) { if ((left < right) && (top < bottom)) { if ((this.left < this.right) && (this.top < this.bottom)) { if (this.left > left) this.left = left; if (this.top > top) this.top = top; if (this.right < right) this.right = right; if (this.bottom < bottom) this.bottom = bottom; } else { this.left = left; this.top = top; this.right = right; this.bottom = bottom; } } }
33、计算当前Rect与指定的left、top、right、bottom顶点是否存在并集区域,存在更新当前矩形区域,否则不更新
public void union(Rect r) { union(r.left, r.top, r.right, r.bottom); }
34、计算当前Rect与指定的Rect是否存在并集区域,存在更新当前矩形区域,否则不更新
public void union(int x, int y) { if (x < left) { left = x; } else if (x > right) { right = x; } if (y < top) { top = y; } else if (y > bottom) { bottom = y; } }
35、计算当前Rect与指定的坐标(x,y)是否存在并集区域,存在更新当前矩形区域,否则不更新
public void sort() { if (left > right) { int temp = left; left = right; right = temp; } if (top > bottom) { int temp = top; top = bottom; bottom = temp; } }
36、排序当前矩形区域,符合:left<right,top<bottom< p="" style="box-sizing: border-box;">
public void scale(float scale) { if (scale != 1.0f) { left = (int) (left * scale + 0.5f); top = (int) (top * scale + 0.5f); right = (int) (right * scale + 0.5f); bottom = (int) (bottom * scale + 0.5f); } }
37、按照指定的值缩放当前矩形区域
public void scaleRoundIn(float scale) { if (scale != 1.0f) { left = (int) Math.ceil(left * scale); top = (int) Math.ceil(top * scale); right = (int) Math.floor(right * scale); bottom = (int) Math.floor(bottom * scale); } }
38、按照指定的值缩放当前矩形区域
上一篇: 文档型数据库设计模式
下一篇: 关于MFC下检查和消除内存泄露的技巧