欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

机器学习算法_knn(福利)

程序员文章站 2022-03-06 10:16:38
这两天翻了一下机器学习实战这本书,算法是不错,只是代码不够友好,作者是个搞算法的,这点从代码上就能看出来。可是有些地方使用numpy搞数组,搞矩阵,总是感觉怪怪的,一个是需要使用三方包numpy,虽然这个包基本可以说必备了,可是对于一些新手,连pip都用不好,装的numpy也是各种问题,所以说能不用 ......

这两天翻了一下机器学习实战这本书,算法是不错,只是代码不够友好,作者是个搞算法的,这点从代码上就能看出来。可是有些地方使用numpy搞数组,搞矩阵,总是感觉怪怪的,一个是需要使用三方包numpy,虽然这个包基本可以说必备了,可是对于一些新手,连pip都用不好,装的numpy也是各种问题,所以说能不用还是尽量不用,第二个就是毕竟是数据,代码样例里面写的只有几个case,可是实际应用起来,一定是要上数据库的,如果是array是不适合从数据库中读写数据的。因此综合以上两点,我就把这段代码改成list形式了,当然,也可能有人会说我对numpy很熟悉啊,而且作为专业的数学包,矩阵的运算方面也很方便,我不否定,那我这段代码恐怕对你不适合,你可以参考书上的代码,直接照打并理解就好了。

knn,不多说了,网上书上讲这个的一大堆,简单说就是利用新样本new_case的各维度的数值与已有old_case各维度数值的欧式距离计算


欧式距离这里也不说了,有兴趣可以去翻我那篇,里面写的很详细,并用符号展示说明,你也可以改成棋盘距离或街区距离试试,速度可能会比欧式距离快,但还是安利欧式距离。


有一点没搞明白的就是,对坐标进行精度化计算这块,实测后确定使用直接计算无论是错误率还是精度,处理前都要比处理后更准确,可能原代码使用小数点的概率更高些吧,也许这个计算对于小数计算精度更有帮助


闲话一些,不多也不少,下面上代码,代码中配有伪代码,方便阅读,如果还看不太明白可以留言,我把详细注释加上

 

以下是代码中使用颜色,选用html的16进制rgb颜色,在应用时将其转换为10进制数字计算,old_case选取红色圈,new_case选取橙色圈

紫色(茄子颜色)

机器学习算法_knn(福利)

绿色(黄瓜颜色)

机器学习算法_knn(福利)

黄色(香蕉颜色)

机器学习算法_knn(福利)

淡绿(西葫芦颜色)

机器学习算法_knn(福利)

代码见下

#!/usr/bin//python
# coding: utf-8

'''
1、获取key和coord_values,样例使用的是list,但是如果真正用在训练上的话list就不适合了,建议改为使用数据库进行读取
2、对坐标进行精度化计算,这个其实我没理解是为什么,可能为了防止错误匹配吧,书上是这样写的
3、指定两个参数,参数一是新加入case的坐标,参数二是需要匹配距离最近的周边点的个数n,这里赢指定单数
4、距离计算,使用欧式距离
  新加入case的坐标与每一个已有坐标计算,这里还有优化空间,以后更新
  计算好的距离与key做成新的key-value
  依据距离排序
  取前n个case
5、取得key
  对前n个case的key进行统计
  取统计量结果最多的key即是新加入case所对应的分组
6、将新加入的values与分组写成key-value加入已有的key-value列队
输入新的case坐标,返回第一步......递归
'''

import operator

def create_case_list():
  # 1代表黄瓜,2代表香蕉,3代表茄子,4代表西葫芦
  case_list = [[25,3,73732],[27.5,8,127492],[13,6,127492],[16,13,50331049],[17,4,18874516],[22,8,13762774],[14,1,30473482],[18,3,38338108]]
  case_type = [1,1,2,2,3,3,4,4]
  return case_list,case_type

def knn_fun(user_coord,case_coord_list,case_type,take_num):
  case_len = len(case_coord_list)
  coord_len = len(user_coord)
  eu_distance = []
  for coord in case_coord_list:
    coord_range = [(user_coord[i] - coord[i]) ** 2 for i in range(coord_len)]
    coord_range = sum(coord_range) ** 0.5
    eu_distance.append(coord_range)
  merage_distance_and_type = zip(eu_distance,case_type)
  merage_distance_and_type.sort()
  type_list = [merage_distance_and_type[i][1] for i in range(take_num)]
  class_count = {}
  for type_case in type_list:
    type_temp = {type_case:1}
    if class_count.get(type_case) == none:
      class_count.update(type_temp)
    else: class_count[type_case] += 1
  sorted_class_count = sorted(class_count.iteritems(), key = operator.itemgetter(1), reverse = true)
  return sorted_class_count[0][0]

def auto_norm(case_list):
  case_len = len(case_list[0])
  min_vals = [0] * case_len
  max_vals = [0] * case_len
  ranges = [0] * case_len
  for i in range(case_len):
    min_list = [case[i] for case in case_list]
    min_vals[i] = min(min_list)
    max_vals[i] = max([case[i] for case in case_list])
    ranges[i] = max_vals[i] - min_vals[i]
  norm_data_list = []
  for case in case_list:
    norm_data_list.append([(case[i] - min_vals[i])/ranges[i] for i in range(case_len)])
  return norm_data_list,ranges,min_vals

def main():
  result_list = ['黄瓜','香蕉','茄子','西葫芦']
  dimension1 = float(input('长度是: '))
  dimension2 = float(input('弯曲度是: '))
  dimension3 = float(input('颜色是: '))
  case_list,type_list = create_case_list()
  #norm_data_list,ranges,min_vals = auto_norm(case_list)
  in_coord = [dimension1,dimension2,dimension3]
  #in_coord_len = len(in_coord)
  #in_coord = [in_coord[i]/ranges[i] for i in range(in_coord_len)]
  #class_sel_result = knn_fun(in_coord,norm_data_list,type_list,3)
  class_sel_result = knn_fun(in_coord,case_list,type_list,3)
  class_sel_result = class_sel_result - 1
  return result_list[class_sel_result]

if __name__ == '__main__':
  a = main()
  print '这货是: %s' %a

测试结果,效果还不赖

机器学习算法_knn(福利)