欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

python数据分析案例2:Python爬虫框架Scrapy入门与实践:

程序员文章站 2022-04-27 17:32:41
...

转载自:https://www.jianshu.com/p/169b62a8a269

本文建立在学习完大壮老师视频Python最火爬虫框架Scrapy入门与实践,自己一步一步操作后做一个记录(建议跟我一样的新手都一步一步进行操作).
主要介绍:
1、scrapy框架简介、数据在框架内如何进行流动
2、scrapy框架安装、mongodb数据库安装
3、scrapy抓取项目如何创建
4、scrapy抓取项目如何进行数据解析
5、scrapy抓取项目如何绕过反爬机制抓取数据
6、scrapy抓取项目如何存储数据到不同的格式
=
抓取目标:
本文通过网页豆瓣电影排行数据的抓取和清洗,介绍Python使用

python数据分析案例2:Python爬虫框架Scrapy入门与实践:

豆瓣电影排行

大壮老师介绍:
目前任职于某大型互联网公司人工智能中心。Python开发工程师,主要负责汽车简历数据抓取、商业推广平台数据抓取及接口开发、竞品信息数据抓取等工作。 开发语言:python、autoit。项目中主要使用工具requests 多线程抓取网页系统数据,使用autoit抓取软件系统数据,使用appium抓取app系统数据等。使用scrapy进行大数据量信息抓取

准备工作:
1、具有一定的Python基础
2、具有一定的linux系统管理基础,编译安装软件,yum包管理工具等
3、具有一定数据库管理基础,增删改查
4、了解xpath语法和插件的使用方法

代码下载地址:Python爬虫框架Scrapy入门与实践
注意:
文件middlewares.py 中下面信息需要改为有效信息:
request.meta['proxy'] = 'http-cla.abuyun.com:9030'
proxy_name_pass = b'H622272STYB666BW:F78990HJSS7'
如果么有购买,测试功能需要取消该方法:
修改settings.py文件:注释douban.middlewares.my_proxy:
DOWNLOADER_MIDDLEWARES = { #'douban.middlewares.my_proxy': 543,}

操作 1 : 通过Pycharm CE 创建一个项目scrapy_douban

创建前需要安装好相应的环境和软件:
环境配置,安装
A : 安装Anaconda (包含Python环境,Conda,numpy,pandas 等大量依赖包) :
下载地址1:Anaconda 下载1
下载地址2(国内推荐): 清华大学开源镜像 Anaconda 下载

选择包 : 分别对应有Mac , windows, linux 包, 根据设备选择,
比如我的是Mac : Anaconda3-5.2.0-MacOSX-x86_64-1.pkg

python数据分析案例2:Python爬虫框架Scrapy入门与实践:

Anaconda5.2

下载开发工具->PyCharm

logo如下:

 

python数据分析案例2:Python爬虫框架Scrapy入门与实践:

PyCharm

创建项目: 下面选择Python方式是创建一个新的目录管理第三方源, 后面可能需要手动导入需要的包

python数据分析案例2:Python爬虫框架Scrapy入门与实践:

图片.png

创建后就会自动生成项目,并导入初始化环境, 然后就可以创建代码了:

 

python数据分析案例2:Python爬虫框架Scrapy入门与实践:

图片.png

操作 2 : 进入你的项目路径, 并初始化

(下面调试是在Mac OS 系统进行,其他系统可能有点小区别)
进入你的项目路径:
cd /Users/niexiaobo/Documents/PythonFile/scrapy_douban
并初始化一个项目douban:
scrapy startproject douban

 

终端效果如下:

niexiaobodeMacBook-Pro:~ niexiaobo$ cd /Users/niexiaobo/Documents/PythonFile/scrapy_douban 
niexiaobodeMacBook-Pro:scrapy_douban niexiaobo$ scrapy startproject douban
New Scrapy project 'douban', using template directory '/anaconda3/lib/python3.6/site-packages/scrapy/templates/project', created in:
    /Users/niexiaobo/Documents/PythonFile/scrapy_douban/douban

You can start your first spider with:
    cd douban
    scrapy genspider example example.com
niexiaobodeMacBook-Pro:scrapy_douban niexiaobo$ 

python数据分析案例2:Python爬虫框架Scrapy入门与实践:

图片.png

操作 3 : 修改settings.py设置文件:

 

ROBOTSTXT_OBEY = False
# 下载延时
DOWNLOAD_DELAY = 0.5

操作 4 : 生成初始化文件:

 

niexiaobodeMacBook-Pro:scrapy_douban niexiaobo$ cd douban/
niexiaobodeMacBook-Pro:douban niexiaobo$ ls
douban      scrapy.cfg
niexiaobodeMacBook-Pro:douban niexiaobo$ cd douban/
niexiaobodeMacBook-Pro:douban niexiaobo$ cd spiders/
niexiaobodeMacBook-Pro:spiders niexiaobo$ scrapy genspider douban_spider movie.douban.com
Created spider 'douban_spider' using template 'basic' in module:
  douban.spiders.douban_spider
niexiaobodeMacBook-Pro:spiders niexiaobo$ ls
__init__.py     __pycache__     douban_spider.py
niexiaobodeMacBook-Pro:spiders niexiaobo$ 

python数据分析案例2:Python爬虫框架Scrapy入门与实践:

图片.png

抓取目标链接:https://movie.douban.com/top250

 

python数据分析案例2:Python爬虫框架Scrapy入门与实践:

图片.png

操作 5 : 根据需要抓取的对象编辑数据模型文件 items.py ,创建对象(序号,名称,描述,评价等等).

 

# -*- coding: utf-8 -*-

# Define here the models for your scraped items
#
# See documentation in:
# https://doc.scrapy.org/en/latest/topics/items.html

import scrapy


class DoubanItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()

    #序号
    serial_number = scrapy.Field()
    #电影名称
    movie_name = scrapy.Field()
    # 介绍
    introduce = scrapy.Field()
    # 星级
    star = scrapy.Field()
    # 评价
    evaluate = scrapy.Field()
    # 描述
    describle = scrapy.Field()

操作 6 : 编辑爬虫文件douban_spider.py :

修改前:

 

# -*- coding: utf-8 -*-
import scrapy


class DoubanSpiderSpider(scrapy.Spider):
    name = 'douban_spider'
    allowed_domains = ['movie.douban.com']
    start_urls = ['http://movie.douban.com/']

    def parse(self, response):
        pass

修改后:

 

# -*- coding: utf-8 -*-
import scrapy


class DoubanSpiderSpider(scrapy.Spider):
    # 爬虫的名称
    name = 'douban_spider'
    # 爬虫允许抓取的域名
    allowed_domains = ['movie.douban.com']
    # 爬虫抓取数据地址,给调度器
    start_urls = ['http://movie.douban.com/top250']

    def parse(self, response):
        # 打印返回结果
        print(response.text)

操作 7 : 开启scrapy项目:

打开终端, 在spiders文件路径下执行命令:scrapy crawl douban_spider

 

niexiaobodeMacBook-Pro:spiders niexiaobo$ scrapy crawl douban_spider

执行返回:

 

2018-07-10 10:36:18 [scrapy.utils.log] INFO: Scrapy 1.5.0 started (bot: douban)
2018-07-10 10:36:18 [scrapy.utils.log] INFO: Versions: lxml 4.2.1.0, libxml2 2.9.8, cssselect 1.0.3, parsel 1.5.0, w3lib 1.19.0, Twisted 18.4.0, Python 3.6.5 |Anaconda, Inc.| (default, Apr 26 2018, 08:42:37) - [GCC 4.2.1 Compatible Clang 4.0.1 (tags/RELEASE_401/final)], pyOpenSSL 18.0.0 (OpenSSL 1.0.2o  27 Mar 2018), cryptography 2.2.2, Platform Darwin-16.7.0-x86_64-i386-64bit
2018-07-10 10:36:18 [scrapy.crawler] INFO: Overridden settings: {'BOT_NAME': 'douban', 'DOWNLOAD_DELAY': 0.5, 'NEWSPIDER_MODULE': 'douban.spiders', 'SPIDER_MODULES': ['douban.spiders']}
2018-07-10 10:36:18 [scrapy.middleware] INFO: Enabled extensions:
['scrapy.extensions.corestats.CoreStats',
 'scrapy.extensions.telnet.TelnetConsole',
 'scrapy.extensions.memusage.MemoryUsage',
 'scrapy.extensions.logstats.LogStats']
2018-07-10 10:36:18 [scrapy.middleware] INFO: Enabled downloader middlewares:
['scrapy.downloadermiddlewares.httpauth.HttpAuthMiddleware',
 'scrapy.downloadermiddlewares.downloadtimeout.Do
.
.
2018-07-10 10:36:18 [scrapy.core.engine] DEBUG: Crawled (403) <GET http://movie.douban.com/top250> (referer: None)
2018-07-10 10:36:18 [scrapy.spidermiddlewares.httperror] INFO: Ignoring response <403 http://movie.douban.com/top250>: HTTP status code is not handled or not allowed
.
.
 'log_count/DEBUG': 2,
 'log_count/INFO': 8,
 'memusage/max': 51515392,
 'memusage/startup': 51515392,
 'response_received_count': 1,
 'scheduler/dequeued': 1,
 'scheduler/dequeued/memory': 1,
 'scheduler/enqueued': 1,
 'scheduler/enqueued/memory': 1,
 'start_time': datetime.datetime(2018, 7, 10, 2, 36, 18, 577140)}
2018-07-10 10:36:18 [scrapy.core.engine] INFO: Spider closed (finished)

上面返回发现有报错:

 

2018-07-10 10:36:18 [scrapy.core.engine] DEBUG: Crawled (403) <GET http://movie.douban.com/top250> (referer: None)
2018-07-10 10:36:18 [scrapy.spidermiddlewares.httperror] INFO: Ignoring response <403 http://movie.douban.com/top250>: HTTP status code is not handled or not allowed

我们还需要回到项目settings.py 里 设置USER_AGENT,不然请求无法通过
设置什么内容?

操作 8 : 设置请求头信息 USER_AGENT

我们需要打开网页,F12打开页面调试窗口,在网络(network)下,刷新页面,找到"top250",并点击它:

 

python数据分析案例2:Python爬虫框架Scrapy入门与实践:

图片.png

 

找到请求信息的消息头,里面有User-Agent信息: (复制它)

python数据分析案例2:Python爬虫框架Scrapy入门与实践:

图片.png

 

User-Agent:Mozilla/5.0 (Macintosh; Intel Mac OS X 10.12; rv:61.0) Gecko/20100101 Firefox/61.0

打开Pycharm CE的 settings.py 里 设置USER_AGENT:

python数据分析案例2:Python爬虫框架Scrapy入门与实践:

图片.png

打开终端, 在spiders文件路径下重新执行命令:scrapy crawl douban_spider

 

niexiaobodeMacBook-Pro:spiders niexiaobo$ scrapy crawl douban_spider

如果返回日志里有一堆html信息,说明执行成功:

 

...
<div class="pic">
                    <em class="">1</em>
                    <a href="https://movie.douban.com/subject/1292052/">
                        <img width="100" alt="肖申克的救赎" src="https://img3.doubanio.com/view/photo/s_ratio_poster/public/p480747492.jpg" class="">
                    </a>
                </div>
                <div class="info">
                    <div class="hd">
                        <a href="https://movie.douban.com/subject/1292052/" class="">
                            <span class="title">肖申克的救赎</span>
                                    <span class="title">&nbsp;/&nbsp;The Shawshank Redemption</span>
                                <span class="other">&nbsp;/&nbsp;月黑高飞(港)  /  刺激1995(台)</span>
                        </a>


                            <span class="playable">[可播放]</span>
                    </div>
                    <div class="bd">
                        <p class="">
                            导演: 弗兰克·德拉邦特 Frank Darabont&nbsp;&nbsp;&nbsp;主演: 蒂姆·罗宾斯 Tim Robbins /...<br>
                            1994&nbsp;/&nbsp;美国&nbsp;/&nbsp;犯罪 剧情
                        </p>

                        
                        <div class="star">
                                <span class="rating5-t"></span>
                                <span class="rating_num" property="v:average">9.6</span>
                                <span property="v:best" content="10.0"></span>
                                <span>1062864人评价</span>
                        </div>

                            <p class="quote">
                                <span class="inq">希望让人*。</span>
                            </p>
                    </div>
                </div>
...

另外,本人安装Python是通过Anaconda管理,会安装大部分常用的模块,如果编译安装Python缺少模块,就可能执行失败

 

python数据分析案例2:Python爬虫框架Scrapy入门与实践:

图片.png

如果执行失败,比如下面情况,像教程里老师缺少sqlite3:

 

python数据分析案例2:Python爬虫框架Scrapy入门与实践:

图片.png

那么需要安装sqlite:

 

管理员执行命令: sudo yum -y install sqlite*
再输入电脑密码回车

python数据分析案例2:Python爬虫框架Scrapy入门与实践:

图片.png

安装成功后,需要重新编译一下Python,并开启sqlite
进入你的Python安装目录编译:
./configure --prefix='你的安装路径' --with-ssl

 

python数据分析案例2:Python爬虫框架Scrapy入门与实践:

图片.png

操作 9 : 上面我们是在终端执行的,为了方便,现在设置在Pycharm CE开发工具中执行.

首先我们需要创建一个启动文件,比如main.py:
创建完成后编写如下main.py:

 

from  scrapy import cmdline
# 输出未过滤的页面信息
cmdline.execute('scrapy crawl douban_spider'.split())

右键运行,返回信息和终端一样.

操作 10 : 下面进入爬虫文件douban_spider.py 进行进一步设置:

 

# -*- coding: utf-8 -*-
import scrapy


class DoubanSpiderSpider(scrapy.Spider):
    # 爬虫的名称
    name = 'douban_spider'
    # 爬虫允许抓取的域名
    allowed_domains = ['movie.douban.com']
    # 爬虫抓取数据地址,给调度器
    start_urls = ['http://movie.douban.com/top250']

    def parse(self, response):
        movie_list = response.xpath("//div[@class='article']//ol[@class='grid_view']/li")
        for i_item in movie_list:
            print(i_item)

其中:response.xpath("//div[@class='article']//ol[@class='grid_view']/li")是xml的解析方法xpath, 括号内是xpath语法:

(根据抓取网页的目录结构,等到上面结果, 意思是选取class为article的div下,class为grid_view的ol下的所有li标签)

python数据分析案例2:Python爬虫框架Scrapy入门与实践:

图片.png

示例:

 

python数据分析案例2:Python爬虫框架Scrapy入门与实践:

图片.png

回到上面,在douban_spider.py 编辑完成后,进入main.py运行:

 

2018-07-10 14:31:51 [scrapy.downloadermiddlewares.redirect] DEBUG: Redirecting (301) to <GET https://movie.douban.com/top250> from <GET http://movie.douban.com/top250>
2018-07-10 14:31:52 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://movie.douban.com/top250> (referer: None)
<200 https://movie.douban.com/top250>
<Selector xpath="//div[@class='article']//ol[@class='grid_view']/li" data='<li>\n            <div class="item">\n    '>
<Selector xpath="//div[@class='article']//ol[@class='grid_view']/li" data='<li>\n            <div class="item">\n    '>
<Selector xpath="//div[@class='article']//ol[@class='grid_view']/li" data='<li>\n            <div class="item">\n    '>
<Selector xpath="//div[@class='article']//ol[@class='grid_view']/li" data='<li>\n            <div class="item">\n    '>
<Selector xpath="//div[@class='article']//ol[@class='grid_view']/li" data='<li>\n            <div class="item">\n    '>
...

操作 11 : 返回我们选择的Selector对象

接下来进一步细分,获取详细的信息:
继续修改 信息:
1: 导入模型文件from douban.items import DoubanItem
意思是从目录文件douban下的items.py里,导入DoubanItem模型
2: 修改遍历:

 

        for i_item in movie_list:
            douban_item = DoubanItem()
            douban_item['serial_number'] = i_item.xpath(".//div[@class='item']//em/text()").extract_first()
            print(douban_item)

解释:

1 DoubanItem() 模型初始化
2 douban_item['serial_number'] 设置模型变量serial_number值,
3 i_item.xpath(".//div[@class='item']//em/text()")对返回结果进一步筛选,并且以"."开头表示拼接,以text()结束表示获取其信息
4 extract_first() 筛选结果的第一个值

修改后的douban_spider.py文件:

 

# -*- coding: utf-8 -*-
import scrapy
from douban.items import DoubanItem

class DoubanSpiderSpider(scrapy.Spider):
    # 爬虫的名称
    name = 'douban_spider'
    # 爬虫允许抓取的域名
    allowed_domains = ['movie.douban.com']
    # 爬虫抓取数据地址,给调度器
    start_urls = ['http://movie.douban.com/top250']

    def parse(self, response):
        movie_list = response.xpath("//div[@class='article']//ol[@class='grid_view']/li")
        for i_item in movie_list:
            douban_item = DoubanItem()
            douban_item['serial_number'] = i_item.xpath(".//div[@class='item']//em/text()").extract_first()
            print(douban_item)


运行main.py:( 如下,序号获取成功)

 

2018-07-10 15:06:13 [scrapy.downloadermiddlewares.redirect] DEBUG: Redirecting (301) to <GET https://movie.douban.com/top250> from <GET http://movie.douban.com/top250>
2018-07-10 15:06:14 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://movie.douban.com/top250> (referer: None)
{'serial_number': '1'}
{'serial_number': '2'}
{'serial_number': '3'}
{'serial_number': '4'}
{'serial_number': '5'}
{'serial_number': '6'}
{'serial_number': '7'}
...

操作 12 : 完善douban_spider.py文件(解析详细属性):

 

# -*- coding: utf-8 -*-
import scrapy
from douban.items import DoubanItem

class DoubanSpiderSpider(scrapy.Spider):
    # 爬虫的名称
    name = 'douban_spider'
    # 爬虫允许抓取的域名
    allowed_domains = ['movie.douban.com']
    # 爬虫抓取数据地址,给调度器
    start_urls = ['http://movie.douban.com/top250']

    def parse(self, response):
        movie_list = response.xpath("//div[@class='article']//ol[@class='grid_view']/li")
        for i_item in movie_list:
            douban_item = DoubanItem()
            douban_item['serial_number'] = i_item.xpath(".//div[@class='item']//em/text()").extract_first()
            douban_item['movie_name'] = i_item.xpath(".//div[@class='info']/div[@class='hd']/a/span[1]/text()").extract_first()
            descs = i_item.xpath(".//div[@class='info']//div[@class='hd']/p[1]/text()").extract()
            for i_desc in descs:
                i_desc_str = "".join(i_desc.split())
                douban_item['introduce'] = i_desc_str

            douban_item['star'] = i_item.xpath(".//span[@class='rating_num']/text()").extract_first()
            douban_item['evaluate'] = i_item.xpath(".//div[@class='star']//span[4]/text()").extract_first()
            douban_item['describle'] = i_item.xpath(".//p[@class='quote']/span/text()").extract_first()
            print(douban_item)

再次运行main.py,返回信息:

 

2018-07-10 15:29:21 [scrapy.core.engine] DEBUG: Crawled (200) <GET https://movie.douban.com/top250> (referer: None)
{'describle': '希望让人*。',
 'evaluate': '1062864人评价',
 'movie_name': '肖申克的救赎',
 'serial_number': '1',
 'star': '9.6'}
{'describle': '风华绝代。',
 'evaluate': '774612人评价',
 'movie_name': '霸王别姬',
 'serial_number': '2',
 'star': '9.5'}
{'describle': '怪蜀黍和小萝莉不得不说的故事。',
 'evaluate': '991246人评价',
 'movie_name': '这个杀手不太冷',
 'serial_number': '3',
 'star': '9.4'}
...

操作 13 : yield命令和Scrapy框架

接着把刚才最后一行代码
print(douban_item)
替换成
yield douban_item

意思是将返回结果压入 item Pipline进行处理:(如下图介绍scrapy原理)

python数据分析案例2:Python爬虫框架Scrapy入门与实践:

 

图片.png

操作 14 : 继续编辑我们的爬虫douban_spider.py文件

一直到上面为止,只抓取了当前页面,接下来需要处理下一页功能,并遍历所有链接.
如下图所示,我们需要遍历标签<span class="next"> 下的<a href="".....</a>

python数据分析案例2:Python爬虫框架Scrapy入门与实践:

图片.png

操作 15 : 遍历 "下一页" , 获取所有数据

再次编辑douban_spider.py文件:

 

# -*- coding: utf-8 -*-
import scrapy
from douban.items import DoubanItem

class DoubanSpiderSpider(scrapy.Spider):
    # 爬虫的名称
    name = 'douban_spider'
    # 爬虫允许抓取的域名
    allowed_domains = ['movie.douban.com']
    # 爬虫抓取数据地址,给调度器
    start_urls = ['http://movie.douban.com/top250']

    def parse(self, response):
        movie_list = response.xpath("//div[@class='article']//ol[@class='grid_view']/li")
        for i_item in movie_list:
            douban_item = DoubanItem()
            douban_item['serial_number'] = i_item.xpath(".//div[@class='item']//em/text()").extract_first()
            douban_item['movie_name'] = i_item.xpath(".//div[@class='info']/div[@class='hd']/a/span[1]/text()").extract_first()
            descs = i_item.xpath(".//div[@class='info']//div[@class='hd']/p[1]/text()").extract()
            for i_desc in descs:
                i_desc_str = "".join(i_desc.split())
                douban_item['introduce'] = i_desc_str

            douban_item['star'] = i_item.xpath(".//span[@class='rating_num']/text()").extract_first()
            douban_item['evaluate'] = i_item.xpath(".//div[@class='star']//span[4]/text()").extract_first()
            douban_item['describle'] = i_item.xpath(".//p[@class='quote']/span/text()").extract_first()
            yield douban_item
        # 解析下一页
        next_link = response.xpath("//span[@class='next']/link/@href").extract()
        if next_link:
            next_link = next_link[0]
            yield scrapy.Request("https://movie.douban.com/top250"+next_link,callback=self.parse)

解释:
1 每次for循环结束后,需要获取next页面链接:next_link
2 如果到最后一页时没有下一页,需要判断一下
3 下一页地址拼接: 点击第二页时页面地址是https://movie.douban.com/top250?start=25&filter= 恰好就是https://movie.douban.com/top250 和 <a href ...</a>中href的拼接
4 callback=self.parse : 请求回调

运行main.py结果:(可以看到我们把最后一个序号250的数据加载到)

 

python数据分析案例2:Python爬虫框架Scrapy入门与实践:

图片.png

操作 16 : 保存数据到json文件 或者 csv文件

在douban路径执行:scrapy crawl douban_spider -o movielist.json
或者
在douban路径执行:scrapy crawl douban_spider -o movielist.csv

 

niexiaobodeMacBook-Pro:douban niexiaobo$ scrapy crawl douban_spider -o movielist.json

 

niexiaobodeMacBook-Pro:douban niexiaobo$ scrapy crawl douban_spider -o movielist.csv

保存成功:

 

...
{'describle': '一部能引人思考的科幻励志片。',
 'evaluate': '92482人评价',
 'movie_name': '千钧一发',
 'serial_number': '249',
 'star': '8.7'}
2018-07-10 17:29:47 [scrapy.core.scraper] DEBUG: Scraped from <200 https://movie.douban.com/top250?start=225&filter=>
{'describle': '献给所有外婆的电影。',
 'evaluate': '50187人评价',
 'movie_name': '爱·回家',
 'serial_number': '250',
 'star': '9.0'}
2018-07-10 17:29:47 [scrapy.core.engine] INFO: Closing spider (finished)
2018-07-10 17:29:47 [scrapy.extensions.feedexport] INFO: Stored json feed (250 items) in: movielist.json
2018-07-10 17:29:47 [scrapy.statscollectors] INFO: Dumping Scrapy stats:
{'downloader/request_bytes': 3862,
 'downloader/request_count': 11,
 'downloader/request_method_count/GET': 11,
 'downloader/response_bytes': 128522,
 'downloader/response_count': 11,
 'downloader/response_status_count/200': 10,
 'downloader/response_status_count/301': 1,
 'finish_reason': 'finished',
 'finish_time': datetime.datetime(2018, 7, 10, 9, 29, 47, 88010),
 'item_scraped_count': 250,
 'log_count/DEBUG': 262,
 'log_count/INFO': 8,
 'memusage/max': 51916800,
 'memusage/startup': 51916800,
 'request_depth_max': 9,
 'response_received_count': 10,
 'scheduler/dequeued': 11,
 'scheduler/dequeued/memory': 11,
 'scheduler/enqueued': 11,
 'scheduler/enqueued/memory': 11,
 'start_time': datetime.datetime(2018, 7, 10, 9, 29, 40, 675082)}
2018-07-10 17:29:47 [scrapy.core.engine] INFO: Spider closed (finished)

ls查看:里面有movielist.json 和 movielist.csv

 

niexiaobodeMacBook-Pro:douban niexiaobo$ ls
__init__.py items.py    middlewares.py  movielist.json  settings.py
__pycache__ main.py     movielist.csv   pipelines.py    spiders

查看保存结果:
Mac可以使用Numbers正常打开(如果使用Excel打开显示乱码,需要先设置编码格式Utf8-bom后打开)

python数据分析案例2:Python爬虫框架Scrapy入门与实践:

图片.png

操作 17 : 存储到数据库MongoDB(pymongo)

首先检查是否安装pymongo:
打开终端
输入

 

python

回车
输入:

 

import pymongo

回车

如果没有安装就会报错:

 

...
 No module named 'pymongo'

安装pymongo:
输入命令:

 

pip install pymongo 

回车安装.

安装成功以后,接下来需要编写存储代码.
进入项目
设置settings.py文件
(1)将settings.py被注释的下面代码开启:

 

ITEM_PIPELINES = {
   'douban.pipelines.DoubanPipeline': 300,
}

(2)settings.py文件最后添加数据库信息:

启动数据库服务

host:你的ip地址;
port : pymongo默认端口
db_name: 数据库名
db_collection: 表名

 

# 定义MongoDB信息
mongo_host = '172.16.0.0'
mongo_port = 27017
mongo_db_name = 'douban'
mongo_db_collection = 'douban_movie'

修改你的pipelines.py文件如下:

 

# -*- coding: utf-8 -*-
import pymongo
from douban.settings import mongo_host ,mongo_port,mongo_db_name,mongo_db_collection

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html


class DoubanPipeline(object):
    def __init__(self):
        host = mongo_host
        port = mongo_port
        dbname = mongo_db_name
        sheetname = mongo_db_collection
        client = pymongo.MongoClient(host=host,port=port)
        mydb = client[dbname]
        self.post = mydb[sheetname]
    def process_item(self, item, spider):
        data = dict(item)
        self.post.insert(data)
        return item

进入main.py运行.即可存储数据到数据库.

操作 17 : ip代理中间价编写(爬虫ip地址伪装)

修改中间价文件:middlewares.py文件:
(1)文件开头导入base64文件:

 

import base64

(2)文件结尾添加方法:

 

class my_proxy(object):
    def process_request(self,request,spider):
        request.meta['proxy'] = 'http-cla.abuyun.com:9030'
        proxy_name_pass = b'H622272STYB666BW:F78990HJSS7'
        enconde_pass_name = base64.b64encode(proxy_name_pass)
        request.headers['Proxy-Authorization'] = 'Basic ' + enconde_pass_name.decode()

解释:根据阿布云注册购买http隧道列表信息
request.meta['proxy'] : '服务器地址:端口号'
proxy_name_pass: b'证书号:**' ,b开头是字符串base64处理
base64.b64encode() : 变量做base64处理
'Basic ' : basic后一定要有空格

大壮老师购买阿布云http隧道页:

 

python数据分析案例2:Python爬虫框架Scrapy入门与实践:

图片.png

修改settings.py文件:
(3)取消注释,并修改如下:

 

DOWNLOADER_MIDDLEWARES = {
   'douban.middlewares.my_proxy': 543,
}

(4)进入main.py运行:
下面截图表示成功隐藏ip地址

 

python数据分析案例2:Python爬虫框架Scrapy入门与实践:

图片.png

操作 18 : 头信息User-Agent伪装

其实在上面'操作 8' 步骤里已经设置过一次User-Agent信息,不过信息是写死的,
接下里我们通过随机给出一个User-Agent信息的方式来实现简单伪装:

同样是修改中间价文件:middlewares.py文件:
(1)文件开头导入random文件(随机函数):

 

import random

(2)文件结尾添加方法:
添加新方法:

 

class my_useragent(object):
    def process_request(self, request, spider):
        UserAgentList = [
            "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; AcooBrowser; .NET CLR 1.1.4322; .NET CLR 2.0.50727)",
            "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; Acoo Browser; SLCC1; .NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR 3.0.04506)",
            "Mozilla/4.0 (compatible; MSIE 7.0; AOL 9.5; AOLBuild 4337.35; Windows NT 5.1; .NET CLR 1.1.4322; .NET CLR 2.0.50727)",
            "Mozilla/5.0 (Windows; U; MSIE 9.0; Windows NT 9.0; en-US)",
            "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Win64; x64; Trident/5.0; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 2.0.50727; Media Center PC 6.0)",
            "Mozilla/5.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0; WOW64; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 1.0.3705; .NET CLR 1.1.4322)",
            "Mozilla/4.0 (compatible; MSIE 7.0b; Windows NT 5.2; .NET CLR 1.1.4322; .NET CLR 2.0.50727; InfoPath.2; .NET CLR 3.0.04506.30)",
            "Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN) AppleWebKit/523.15 (KHTML, like Gecko, Safari/419.3) Arora/0.3 (Change: 287 c9dfb30)",
            "Mozilla/5.0 (X11; U; Linux; en-US) AppleWebKit/527+ (KHTML, like Gecko, Safari/419.3) Arora/0.6",
            "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.2pre) Gecko/20070215 K-Ninja/2.1.1",
            "Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN; rv:1.9) Gecko/20080705 Firefox/3.0 Kapiko/3.0",
            "Mozilla/5.0 (X11; Linux i686; U;) Gecko/20070322 Kazehakase/0.4.5",
            "Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.8) Gecko Fedora/1.9.0.8-1.fc10 Kazehakase/0.5.6",
            "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11",
            "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3) AppleWebKit/535.20 (KHTML, like Gecko) Chrome/19.0.1036.7 Safari/535.20",
            "Opera/9.80 (Macintosh; Intel Mac OS X 10.6.8; U; fr) Presto/2.9.168 Version/11.52",
            "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.11 TaoBrowser/2.0 Safari/536.11",
            "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.71 Safari/537.1 LBBROWSER",
            "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E; LBBROWSER)",
            "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; QQDownload 732; .NET4.0C; .NET4.0E; LBBROWSER)",
            "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.84 Safari/535.11 LBBROWSER",
            "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E)",
            "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E; QQBrowser/7.0.3698.400)",
            "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; QQDownload 732; .NET4.0C; .NET4.0E)",
            "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0; SV1; QQDownload 732; .NET4.0C; .NET4.0E; 360SE)",
            "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; QQDownload 732; .NET4.0C; .NET4.0E)",
            "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E)",
            "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.89 Safari/537.1",
            "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.89 Safari/537.1",
            "Mozilla/5.0 (iPad; U; CPU OS 4_2_1 like Mac OS X; zh-cn) AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mobile/8C148 Safari/6533.18.5",
            "Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:2.0b13pre) Gecko/20110307 Firefox/4.0b13pre",
            "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:16.0) Gecko/20100101 Firefox/16.0",
            "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11",
            "Mozilla/5.0 (X11; U; Linux x86_64; zh-CN; rv:1.9.2.10) Gecko/20100922 Ubuntu/10.10 (maverick) Firefox/3.6.10",
            "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
        ]
        agent = random.choice(UserAgentList)
        request.headers['User_Agent'] = agent

(3)修改settings.py文件:并修改如下:
增加一条设置: 'douban.middlewares.my_useragent': 544

 

DOWNLOADER_MIDDLEWARES = {
   'douban.middlewares.my_proxy': 543,
   'douban.middlewares.my_useragent': 544,

}

(4)进入main.py运行:
user agent设置成功

 

python数据分析案例2:Python爬虫框架Scrapy入门与实践:

图片.png

操作 19 : 最后

学习爬虫可用于个人学习和研究数据,不可涉及违法使用.



 

相关标签: conda Python