使用 MongoDB 数据库存储商品信息
关系型数据库解决方案
上述问题使用传统的关系型数据库也可以解决,比如以下几种方案
针对不同商品,创建不同的表
比如音乐专辑、电影这2种商品,有一部分共同的属性,但也有很多自身特有的属性,可以创建2个不同的表,拥有不同的schema。
CREATE TABLE `product_audio_album` ( `sku` char(8) NOT NULL, ... `artist` varchar(255) DEFAULT NULL, `genre_0` varchar(255) DEFAULT NULL, `genre_1` varchar(255) DEFAULT NULL, ..., PRIMARY KEY(`sku`)) ... CREATE TABLE `product_film` ( `sku` char(8) NOT NULL, ... `title` varchar(255) DEFAULT NULL, `rating` char(8) DEFAULT NULL, ..., PRIMARY KEY(`sku`)) ...
这种做法的主要问题在于
针对每个新的商品分类,都需要创建新的表
应用程序开发者必须显式的将请求分发到对应的表上来查询,一次查询多种商品实现起来比较麻烦
所有商品存储到单张表
CREATE TABLE `product` ( `sku` char(8) NOT NULL, ... `artist` varchar(255) DEFAULT NULL, `genre_0` varchar(255) DEFAULT NULL, `genre_1` varchar(255) DEFAULT NULL, ... `title` varchar(255) DEFAULT NULL, `rating` char(8) DEFAULT NULL, ..., PRIMARY KEY(`sku`))
将所有的商品存储到一张表,这张表包含所有商品需要的属性,不同的商品根据需要设置不同的属性,这种方法使得商品查询比较简单,并且允许一个查询跨多种商品,但缺点是浪费的空间比较多。
提取公共属性,多表继承
CREATE TABLE `product` ( `sku` char(8) NOT NULL, `title` varchar(255) DEFAULT NULL, `description` varchar(255) DEFAULT NULL, `price`, ... PRIMARY KEY(`sku`)) CREATE TABLE `product_audio_album` ( `sku` char(8) NOT NULL, ... `artist` varchar(255) DEFAULT NULL, `genre_0` varchar(255) DEFAULT NULL, `genre_1` varchar(255) DEFAULT NULL, ..., PRIMARY KEY(`sku`), FOREIGN KEY(`sku`) REFERENCES `product`(`sku`)) ... CREATE TABLE `product_film` ( `sku` char(8) NOT NULL, ... `title` varchar(255) DEFAULT NULL, `rating` char(8) DEFAULT NULL, ..., PRIMARY KEY(`sku`), FOREIGN KEY(`sku`) REFERENCES `product`(`sku`)) ...
上述方案将所有商品公共的属性提取出来,将公共属性存储到一张表里,每种商品根据自身的需要创建新的表,新表里只存储该商品特有的信息。
Entity Attribute Values 形式存储
所有的数据按照 的3元组的形式存储,这个方案实际上是把关系型数据库当KV存储使用,模型简单,但应对复杂的查询不是很方便。
ENTITY ATTRIBUTE VALUES
sku_00e8da9b type Audio Album
sku_00e8da9b title A Love Supreme
sku_00e8da9b … …
sku_00e8da9b artist John Coltrane
sku_00e8da9b genre Jazz
sku_00e8da9b genre General
… … …
MongoDB 解决方案
MognoDB 与关系型数据库不同,其无schema,文档内容可以非常灵活的定制,能很好的使用上述商品分类存储的需求; 将商品信息存储在一个集合里,集合里不同的商品可以自定义文档内容。
比如一个音乐专辑可以类似如下的文档结构
{ sku: "00e8da9b", type: "Audio Album", title: "A Love Supreme", description: "by John Coltrane", asin: "B0000A118M", shipping: { weight: 6, dimensions: { width: 10, height: 10, depth: 1 }, }, pricing: { list: 1200, retail: 1100, savings: 100, pct_savings: 8 }, details: { title: "A Love Supreme [Original Recording Reissued]", artist: "John Coltrane", genre: [ "Jazz", "General" ], ... tracks: [ "A Love Supreme Part I: Acknowledgement", "A Love Supreme Part II - Resolution", "A Love Supreme, Part III: Pursuance", "A Love Supreme, Part IV-Psalm" ], }, }
而一部电影则可以存储为
{ sku: "00e8da9d", type: "Film", ..., asin: "B000P0J0AQ", shipping: { ... }, pricing: { ... }, details: { title: "The Matrix", director: [ "Andy Wachowski", "Larry Wachowski" ], writer: [ "Andy Wachowski", "Larry Wachowski" ], ..., aspect_ratio: "1.66:1" }, }
所有商品都拥有一些共同的基本信息,特定的商品可以根据需要扩展独有的内容,非常方便; 基于上述模型,MongoDB 也能很好的服务各类查询。
查询某个演员参演的所有电影,并按发型日志排序
db.products.find({'type': 'Film', 'details.actor': 'Keanu Reeves'}).sort({'details.issue_date', -1})
上述查询也可以通过建立索引来加速
db.products.createIndex({ type: 1, 'details.actor': 1, 'details.issue_date': -1 })
查询标题里包含特定信息的所有电影
db.products.find({ 'type': 'Film', 'title': {'$regex': '.*hacker.*', '$options':'i'}}).sort({'details.issue_date', -1})
可建立如下索引来加速查询
db.products.createIndex({ type: 1, details.issue_date: -1, title: 1 })
扩展
当单个节点无法满足海量商品信息存储的需求时,就需要使用MongoDB sharding来扩展,假定大量的查询都是都会基于商品类型,那么就可以使用商品类型字段来进行分片。
db.shardCollection('products', { key: {type: 1} })
分片时,尽量使用复合的索引字段,这样能满足更多的查询需求,比如基于商品类型之后,还会经常根据商品的风格标签来查询,则可以把商品的标签字段作为第二分片key。
db.shardCollection('products', { key: {type: 1, 'details.genre': 1} })
如果某种类型的商品,拥有相同标签的特别多,则会出现jumbo chunk的问题,导致无法迁移,可以进一步的优化分片key,以避免这种情况。
db.shardCollection('products', { key: {type: 1, 'details.genre': 1, sku: 1} })
加入第3分片key之后,即使类型、风格标签都相同,但其sku信息肯定不同,就肯定不会出现超大的chunk。
推荐阅读
-
html5本地存储之localstorage 、本地数据库、sessionStorage简单使用示例
-
编程开发之--Oracle数据库--存储过程在out参数中使用光标(3)
-
Thinkphp使用mongodb数据库实现多条件查询方法
-
sqlserver数据库使用存储过程和dbmail实现定时发送邮件
-
PHP使用mongoclient简单操作mongodb数据库示例
-
python使用adbapi实现MySQL数据库的异步存储
-
MySQL数据库的使用优势、数据库类型、常用的属性约束和常用存储引擎介绍
-
android之存储篇_SQLite数据库_让你彻底学会SQLite的使用
-
python数据库-MongoDB的基本使用(54)
-
一个查看MSSQLServer数据库空间使用情况的存储过程 SpaceUsed