欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python3 - plotly 练习题

程序员文章站 2022-04-27 10:43:26
博主是在Jupyter Notebooks上进行练习的,如果想知道如何创建Jupyter Notebooks,请点击这里先展示要使用的数据:import chart_studio.plotly as pyfrom plotly.offline import download_plotlyjs,init_notebook_mode,plot,iplotimport plotly.graph_objs as goimport pandas as pdinit_notebook_mode(connec...

博主是在Jupyter Notebooks上进行练习的,如果想知道如何创建Jupyter Notebooks,请点击这里

先展示要使用的数据:

import chart_studio.plotly as py
from plotly.offline import download_plotlyjs,init_notebook_mode,plot,iplot
import plotly.graph_objs as go
import pandas as pd
init_notebook_mode(connected=True)

df = pd.read_csv('2014_World_Power_Consumption')
df.head()

数据如下:
Python3 - plotly 练习题

# locations: Either a name of a column in data_grame, or a pandas Series or array_like object.
# locationmode: One of 'ISO-3','USA-states', or 'country names' Determines the set of locations used to match entries in locations to regions on the map
data = dict(type = 'choropleth',
           locations = df['Country'],
           locationmode = 'country names',
           z = df['Power Consumption KWH'],
           text = df['Country'],
           colorbar = {'title': 'Power Consumption KWH'})

layout = dict(title='2014 Power Consumption',
             geo = dict(showframe=False, projection={'type':'mercator'}))

choromap = go.Figure(data=[data], layout=layout)
iplot(choromap, validate=False)

结果如下:
Python3 - plotly 练习题

data = dict(type = 'choropleth',
           locations = df['Country'],
           colorscale = 'Viridis',
           reversescale = True,
           locationmode = 'country names',
           z = df['Power Consumption KWH'],
           text = df['Country'],
           colorbar = {'title': 'Power Consumption KWH'})

layout = dict(title='2014 Power Consumption',
             geo = dict(showframe=False, projection={'type':'mercator'}))

choromap = go.Figure(data=[data], layout=layout)
iplot(choromap, validate=False)

结果如下:
Python3 - plotly 练习题

data = dict(type = 'choropleth',
           locations = df['Country'],
           colorscale = 'Viridis',
           reversescale = True,
           locationmode = 'country names',
           z = df['Power Consumption KWH'],
           text = df['Country'],
           colorbar = {'title': 'Power Consumption KWH'})

layout = dict(title='2014 Power Consumption',
             geo = dict(showframe=True, projection={'type':'mercator'}))

choromap = go.Figure(data=[data], layout=layout)
iplot(choromap, validate=False)

结果如下:
Python3 - plotly 练习题


如果觉得不错,就点赞或者关注或者留言~~
谢谢~ ~

本文地址:https://blog.csdn.net/BSCHN123/article/details/112004659