欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  数据库

让Mahout KMeans聚类分析运行在Hadoop上

程序员文章站 2022-04-25 21:57:00
...

上一篇文章“Mahout与聚类分析”介绍了如何使用Mahout进行聚类分析的步骤,并且结合实例使用K-Means对微博名人共同关注数据进行了共被关注聚类分析。Mahout运行有本地运行和Hadoop运行两种模式,本地运行是指在用户本地的单机模式下运行,就像运行其他普通的

上一篇文章“Mahout与聚类分析”介绍了如何使用Mahout进行聚类分析的步骤,并且结合实例使用K-Means对微博名人共同关注数据进行了共被关注聚类分析。Mahout运行有本地运行和Hadoop运行两种模式,本地运行是指在用户本地的单机模式下运行,就像运行其他普通的程序一样,但是这样这样就不能最大限度的发挥出Mahout的优势,在本文中我们介绍如何让我们的Mahout聚类分析程序在Hahoop集群上运行(在实际操作中笔者使用的伪分布Hadoop,而不是真正的Hadoop集群)。

配置Mahout运行环境

Mahout运行配置可以在$MAHOUT_HOME/bin/mahout里面进行设置,实际上$MAHOUT_HOME/bin/mahout就是Mahout在命令行的启动脚本,这一点与Hadoop相似,但也又不同,Hadoop在$HADOOP_HOME\conf下面还提供了专门的hadoop-env.sh文件进行相关环境变量的配置,而Mahout在conf目录下没有提供这样的文件。

MAHOUT_LOCAL与HADOOP_CONF_DIR

以上的连个参数是控制Mahout是在本地运行还是在Hadoop上运行的关键。

$MAHOUT_HOME/bin/mahout文件指出,只要设置MAHOUT_LOCAL的值为一个非空(not empty string)值,则不管用户有没有设置HADOOP_CONF_DIR和HADOOP_HOME这两个参数,Mahout都以本地模式运行;换句话说,如果要想Mahout运行在Hadoop上,则MAHOUT_LOCAL必须为空。

HADOOP_CONF_DIR参数指定Mahout运行Hadoop模式时使用的Hadoop配置信息,这个文件目录一般指向的是$HADOOP_HOME目录下的conf目录。

除此之外,我们还应该设置JAVA_HOME或者MAHOUT_JAVA_HOME变量,以及必须将Hadoop的执行文件加入到PATH中。

综上所述:

1. 添加JAVA_HOME变量,可以在直接设置在$MAHOUT_HOME/bin/mahout中,也可以在user/bash profile里面设置(如./bashrc)

2. 设置MAHOUT_HOME并添加Hadoop的执行文件到PATH中

两个步骤在~/.bashrc的设置如下:

export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-i386
#export HADOOP_HOME=/home/yoyzhou/workspace/hadoop-1.1.2
export MAHOUT_HOME=/home/yoyzhou/workspace/mahout-0.7
export PATH=$PATH:/home/yoyzhou/workspace/hadoop-1.1.2/bin:$MAHOUT_HOME/bin

编辑完~/.bashrc,重启Terminal即可生效。

3. 编辑$MAHOUT_HOME/bin/mahout,将HADOOP_CONF_DIR设置为$HADOOP_HOME\conf

HADOOP_CONF_DIR=/home/yoyzhou/workspace/hadoop-1.1.2/conf

读者可以将相关的Hadoop和Mahout主目录修改自己系统上面的目录地址,设置好之后重启Terminal,在命令行输入mahout,如果你看到如下的信息,就说明Mahout的Hadoop运行模式已经配置好了。

MAHOUT_LOCAL is not set; adding HADOOP_CONF_DIR to classpath. 
Running on hadoop...

要想使用本地模式运行,只需在$MAHOUT_HOME/bin/mahout添加一条设置MAHOUT_LOCAL为非空的语句即可。

Mahout命令行

Mahout为相关的数据挖掘算法提供了相应的命令行入口,同时提供了一些数据分析处理的用到的工具集。这些命令可以通过在终端输入mahout获得。以下显示了输入mahout的部分信息:

....
Valid program names are:
  arff.vector: : Generate Vectors from an ARFF file or directory
  baumwelch: : Baum-Welch algorithm for unsupervised HMM training
  canopy: : Canopy clustering
  cat: : Print a file or resource as the logistic regression models would see it
  cleansvd: : Cleanup and verification of SVD output
  clusterdump: : Dump cluster output to text
  ....
  fkmeans: : Fuzzy K-means clustering
  fpg: : Frequent Pattern Growth
  hmmpredict: : Generate random sequence of observations by given HMM
  itemsimilarity: : Compute the item-item-similarities for item-based collaborative filtering
  kmeans: : K-means clustering
....

Mahout kmeans

在上一篇文章,我们通过调用KMeansDriver.run()方法从Mahout程序中直接启动KMeans算法,这种方式对于在本地调试程序非常有用,但是在真实项目中,无论是使用Hadoop模式运行,还是本地运行,从命令行运行Mahout的相关算法更加合适,这样的好处是我们只需要给Mahout提供符合相应算法要求的输入数据,即可以利用Mahout分布式处理的优势。比如在本例中,使用kmeans算法,只需要事先将数据处理成Mahout kmeans算法要求的输入数据,然后在命令行调用mahout kmeans [options]即可。

在命令行输入不带任何参数的mahout kmeans,Mahout将为你列出在命令行使用kmeans算法的使用方法。

Usage:                                                                          
 [--input  --output  --distanceMeasure          
--clusters  --numClusters  --convergenceDelta    
--maxIter  --overwrite --clustering --method                   
--outlierThreshold  --help --tempDir  --startPhase   
 --endPhase ]                                             
--clusters (-c) clusters    The input centroids, as Vectors.  Must be a         
	                        SequenceFile of Writable, Cluster/Canopy.  If k is  
	                        also specified, then a random set of vectors will   
	                        be selected and written out to this path first 

相关的参数我们已经在上篇文章中提到过。

具体的步骤如下:

1. 将数据处理为Mahout向量(Vector)的形式
2. 将Mahout向量转化为Hadoop SequenceFile
3. 创建K个初始质心\[可选\]
4. 将Mahout向量的SequenceFile复制到HDFS上
5. 运行`mahout kmeans [options]`

下面的命令显示使用CosineDistanceMeasure对data/vectors目录下Mahout向量数据进行kmeans聚类分析,输出结果保存在output目录下。

mahout kmeans -i data/vectors -o output -c data/clusters \
-dm org.apache.mahout.common.distance.CosineDistanceMeasure \
-x 10 -ow -cd 0.001 -cl

更加详细的命令行参数可以在Mahout wiki k-means-commandline上查找到。

总结

本文首先介绍了如何配置Mahout的Hadoop的运行环境,然后介绍如何使用mahout kmeans命令行将聚类分析运行在Hadoop上。