欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

collections模块简介

程序员文章站 2022-04-24 21:30:37
collections模块简介 除python提供的内置数据类型(int、float、str、list、tuple、dict)外,collections模块还提供了其他数据类型,使用如下功能需先导入collections模块(import collections): 计数器(counter) 有序字 ......

除python提供的内置数据类型(int、float、str、list、tuple、dict)外,collections模块还提供了其他数据类型,使用如下功能需先导入collections模块(import collections):

  1. 计数器(counter)
  2. 有序字典(orderedDict)
  3. 默认字典(defaultdict)
  4. 可命名元组(namedtuple)
  5. 双向队列(deque)

一、 计数器(Counter):

作用: 统计元素的个数,并以字典形式返回{元素:元素个数}

collections模块简介
class Counter(dict):
# class Counter(dict) 表示Counter类继承dict类,既子类继承父类所有功能
    '''Dict subclass for counting hashable items.  Sometimes called a bag
    or multiset.  Elements are stored as dictionary keys and their counts
    are stored as dictionary values.

    >>> c = Counter('abcdeabcdabcaba')  # count elements from a string

    >>> c.most_common(3)                # three most common elements
    [('a', 5), ('b', 4), ('c', 3)]
    >>> sorted(c)                       # list all unique elements
    ['a', 'b', 'c', 'd', 'e']
    >>> ''.join(sorted(c.elements()))   # list elements with repetitions
    'aaaaabbbbcccdde'
    >>> sum(c.values())                 # total of all counts
    15

    >>> c['a']                          # count of letter 'a'
    5
    >>> for elem in 'shazam':           # update counts from an iterable
    ...     c[elem] += 1                # by adding 1 to each element's count
    >>> c['a']                          # now there are seven 'a'
    7
    >>> del c['b']                      # remove all 'b'
    >>> c['b']                          # now there are zero 'b'
    0

    >>> d = Counter('simsalabim')       # make another counter
    >>> c.update(d)                     # add in the second counter
    >>> c['a']                          # now there are nine 'a'
    9

    >>> c.clear()                       # empty the counter
    >>> c
    Counter()

    Note:  If a count is set to zero or reduced to zero, it will remain
    in the counter until the entry is deleted or the counter is cleared:

    >>> c = Counter('aaabbc')
    >>> c['b'] -= 2                     # reduce the count of 'b' by two
    >>> c.most_common()                 # 'b' is still in, but its count is zero
    [('a', 3), ('c', 1), ('b', 0)]

    '''
    # References:
    #   http://en.wikipedia.org/wiki/Multiset
    #   http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
    #   http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm
    #   http://code.activestate.com/recipes/259174/
    #   Knuth, TAOCP Vol. II section 4.6.3

    def __init__(*args, **kwds):
        '''Create a new, empty Counter object.  And if given, count elements
        from an input iterable.  Or, initialize the count from another mapping
        of elements to their counts.

        >>> c = Counter()                           # a new, empty counter
        >>> c = Counter('gallahad')                 # a new counter from an iterable
        >>> c = Counter({'a': 4, 'b': 2})           # a new counter from a mapping
        >>> c = Counter(a=4, b=2)                   # a new counter from keyword args

        '''
        if not args:
            raise TypeError("descriptor '__init__' of 'Counter' object "
                            "needs an argument")
        self, *args = args
        if len(args) > 1:
            raise TypeError('expected at most 1 arguments, got %d' % len(args))
        super(Counter, self).__init__()
        self.update(*args, **kwds)

    def __missing__(self, key):
        'The count of elements not in the Counter is zero.'
        # Needed so that self[missing_item] does not raise KeyError
        return 0

    def most_common(self, n=None):
        '''List the n most common elements and their counts from the most
        common to the least.  If n is None, then list all element counts.

        >>> Counter('abcdeabcdabcaba').most_common(3)
        [('a', 5), ('b', 4), ('c', 3)]

        '''
        # Emulate Bag.sortedByCount from Smalltalk
        if n is None:
            return sorted(self.items(), key=_itemgetter(1), reverse=True)
        return _heapq.nlargest(n, self.items(), key=_itemgetter(1))

    def elements(self):
        '''Iterator over elements repeating each as many times as its count.

        >>> c = Counter('ABCABC')
        >>> sorted(c.elements())
        ['A', 'A', 'B', 'B', 'C', 'C']

        # Knuth's example for prime factors of 1836:  2**2 * 3**3 * 17**1
        >>> prime_factors = Counter({2: 2, 3: 3, 17: 1})
        >>> product = 1
        >>> for factor in prime_factors.elements():     # loop over factors
        ...     product *= factor                       # and multiply them
        >>> product
        1836

        Note, if an element's count has been set to zero or is a negative
        number, elements() will ignore it.

        '''
        # Emulate Bag.do from Smalltalk and Multiset.begin from C++.
        return _chain.from_iterable(_starmap(_repeat, self.items()))

    # Override dict methods where necessary

    @classmethod
    def fromkeys(cls, iterable, v=None):
        # There is no equivalent method for counters because setting v=1
        # means that no element can have a count greater than one.
        raise NotImplementedError(
            'Counter.fromkeys() is undefined.  Use Counter(iterable) instead.')

    def update(*args, **kwds):
        '''Like dict.update() but add counts instead of replacing them.

        Source can be an iterable, a dictionary, or another Counter instance.

        >>> c = Counter('which')
        >>> c.update('witch')           # add elements from another iterable
        >>> d = Counter('watch')
        >>> c.update(d)                 # add elements from another counter
        >>> c['h']                      # four 'h' in which, witch, and watch
        4

        '''
        # The regular dict.update() operation makes no sense here because the
        # replace behavior results in the some of original untouched counts
        # being mixed-in with all of the other counts for a mismash that
        # doesn't have a straight-forward interpretation in most counting
        # contexts.  Instead, we implement straight-addition.  Both the inputs
        # and outputs are allowed to contain zero and negative counts.

        if not args:
            raise TypeError("descriptor 'update' of 'Counter' object "
                            "needs an argument")
        self, *args = args
        if len(args) > 1:
            raise TypeError('expected at most 1 arguments, got %d' % len(args))
        iterable = args[0] if args else None
        if iterable is not None:
            if isinstance(iterable, Mapping):
                if self:
                    self_get = self.get
                    for elem, count in iterable.items():
                        self[elem] = count + self_get(elem, 0)
                else:
                    super(Counter, self).update(iterable) # fast path when counter is empty
            else:
                _count_elements(self, iterable)
        if kwds:
            self.update(kwds)

    def subtract(*args, **kwds):
        '''Like dict.update() but subtracts counts instead of replacing them.
        Counts can be reduced below zero.  Both the inputs and outputs are
        allowed to contain zero and negative counts.

        Source can be an iterable, a dictionary, or another Counter instance.

        >>> c = Counter('which')
        >>> c.subtract('witch')             # subtract elements from another iterable
        >>> c.subtract(Counter('watch'))    # subtract elements from another counter
        >>> c['h']                          # 2 in which, minus 1 in witch, minus 1 in watch
        0
        >>> c['w']                          # 1 in which, minus 1 in witch, minus 1 in watch
        -1

        '''
        if not args:
            raise TypeError("descriptor 'subtract' of 'Counter' object "
                            "needs an argument")
        self, *args = args
        if len(args) > 1:
            raise TypeError('expected at most 1 arguments, got %d' % len(args))
        iterable = args[0] if args else None
        if iterable is not None:
            self_get = self.get
            if isinstance(iterable, Mapping):
                for elem, count in iterable.items():
                    self[elem] = self_get(elem, 0) - count
            else:
                for elem in iterable:
                    self[elem] = self_get(elem, 0) - 1
        if kwds:
            self.subtract(kwds)

    def copy(self):
        'Return a shallow copy.'
        return self.__class__(self)

    def __reduce__(self):
        return self.__class__, (dict(self),)

    def __delitem__(self, elem):
        'Like dict.__delitem__() but does not raise KeyError for missing values.'
        if elem in self:
            super().__delitem__(elem)

    def __repr__(self):
        if not self:
            return '%s()' % self.__class__.__name__
        try:
            items = ', '.join(map('%r: %r'.__mod__, self.most_common()))
            return '%s({%s})' % (self.__class__.__name__, items)
        except TypeError:
            # handle case where values are not orderable
            return '{0}({1!r})'.format(self.__class__.__name__, dict(self))

    # Multiset-style mathematical operations discussed in:
    #       Knuth TAOCP Volume II section 4.6.3 exercise 19
    #       and at http://en.wikipedia.org/wiki/Multiset
    #
    # Outputs guaranteed to only include positive counts.
    #
    # To strip negative and zero counts, add-in an empty counter:
    #       c += Counter()

    def __add__(self, other):
        '''Add counts from two counters.

        >>> Counter('abbb') + Counter('bcc')
        Counter({'b': 4, 'c': 2, 'a': 1})

        '''
        if not isinstance(other, Counter):
            return NotImplemented
        result = Counter()
        for elem, count in self.items():
            newcount = count + other[elem]
            if newcount > 0:
                result[elem] = newcount
        for elem, count in other.items():
            if elem not in self and count > 0:
                result[elem] = count
        return result

    def __sub__(self, other):
        ''' Subtract count, but keep only results with positive counts.

        >>> Counter('abbbc') - Counter('bccd')
        Counter({'b': 2, 'a': 1})

        '''
        if not isinstance(other, Counter):
            return NotImplemented
        result = Counter()
        for elem, count in self.items():
            newcount = count - other[elem]
            if newcount > 0:
                result[elem] = newcount
        for elem, count in other.items():
            if elem not in self and count < 0:
                result[elem] = 0 - count
        return result

    def __or__(self, other):
        '''Union is the maximum of value in either of the input counters.

        >>> Counter('abbb') | Counter('bcc')
        Counter({'b': 3, 'c': 2, 'a': 1})

        '''
        if not isinstance(other, Counter):
            return NotImplemented
        result = Counter()
        for elem, count in self.items():
            other_count = other[elem]
            newcount = other_count if count < other_count else count
            if newcount > 0:
                result[elem] = newcount
        for elem, count in other.items():
            if elem not in self and count > 0:
                result[elem] = count
        return result

    def __and__(self, other):
        ''' Intersection is the minimum of corresponding counts.

        >>> Counter('abbb') & Counter('bcc')
        Counter({'b': 1})

        '''
        if not isinstance(other, Counter):
            return NotImplemented
        result = Counter()
        for elem, count in self.items():
            other_count = other[elem]
            newcount = count if count < other_count else other_count
            if newcount > 0:
                result[elem] = newcount
        return result

    def __pos__(self):
        'Adds an empty counter, effectively stripping negative and zero counts'
        result = Counter()
        for elem, count in self.items():
            if count > 0:
                result[elem] = count
        return result

    def __neg__(self):
        '''Subtracts from an empty counter.  Strips positive and zero counts,
        and flips the sign on negative counts.

        '''
        result = Counter()
        for elem, count in self.items():
            if count < 0:
                result[elem] = 0 - count
        return result

    def _keep_positive(self):
        '''Internal method to strip elements with a negative or zero count'''
        nonpositive = [elem for elem, count in self.items() if not count > 0]
        for elem in nonpositive:
            del self[elem]
        return self

    def __iadd__(self, other):
        '''Inplace add from another counter, keeping only positive counts.

        >>> c = Counter('abbb')
        >>> c += Counter('bcc')
        >>> c
        Counter({'b': 4, 'c': 2, 'a': 1})

        '''
        for elem, count in other.items():
            self[elem] += count
        return self._keep_positive()

    def __isub__(self, other):
        '''Inplace subtract counter, but keep only results with positive counts.

        >>> c = Counter('abbbc')
        >>> c -= Counter('bccd')
        >>> c
        Counter({'b': 2, 'a': 1})

        '''
        for elem, count in other.items():
            self[elem] -= count
        return self._keep_positive()

    def __ior__(self, other):
        '''Inplace union is the maximum of value from either counter.

        >>> c = Counter('abbb')
        >>> c |= Counter('bcc')
        >>> c
        Counter({'b': 3, 'c': 2, 'a': 1})

        '''
        for elem, other_count in other.items():
            count = self[elem]
            if other_count > count:
                self[elem] = other_count
        return self._keep_positive()

    def __iand__(self, other):
        '''Inplace intersection is the minimum of corresponding counts.

        >>> c = Counter('abbb')
        >>> c &= Counter('bcc')
        >>> c
        Counter({'b': 1})

        '''
        for elem, count in self.items():
            other_count = other[elem]
            if other_count < count:
                self[elem] = other_count
        return self._keep_positive()
View Code

collections模块简介

 

Counter类包含方法如下:

1.  most_common:

作用: 将元素出现的次数按照从高到低进行排序,并返回前N个元素,若多个元素统计数相同,按照字母顺序排列,N若未指定,则返回所有元素

collections模块简介
    def most_common(self, n=None):
        '''List the n most common elements and their counts from the most
        common to the least.  If n is None, then list all element counts.

        >>> Counter('abcdeabcdabcaba').most_common(3)
        [('a', 5), ('b', 4), ('c', 3)]      
 
        '''
        # Emulate Bag.sortedByCount from Smalltalk
        if n is None:
            return sorted(self.items(), key=_itemgetter(1), reverse=True)
        return _heapq.nlargest(n, self.items(), key=_itemgetter(1))
View Code

collections模块简介

 2. elements:

作用: 返回一个迭代器,元素被重复多少次,在迭代器中就包含多少个此元素,所有元素按字母序排列,个数<1的不罗列

collections模块简介
def elements(self):
        '''Iterator over elements repeating each as many times as its count.

        >>> c = Counter('ABCABC')
        >>> sorted(c.elements())
        ['A', 'A', 'B', 'B', 'C', 'C']

        # Knuth's example for prime factors of 1836:  2**2 * 3**3 * 17**1
        >>> prime_factors = Counter({2: 2, 3: 3, 17: 1})
        >>> product = 1
        >>> for factor in prime_factors.elements():     # loop over factors
        ...     product *= factor                       # and multiply them
        >>> product
        1836

        Note, if an element's count has been set to zero or is a negative
        number, elements() will ignore it.

        '''
        # Emulate Bag.do from Smalltalk and Multiset.begin from C++.
        return _chain.from_iterable(_starmap(_repeat, self.items()))
View Code

collections模块简介

3. update:

作用: 增加元素的重复次数

collections模块简介
def update(*args, **kwds):
        '''Like dict.update() but add counts instead of replacing them.

        Source can be an iterable, a dictionary, or another Counter instance.

        >>> c = Counter('which')
        >>> c.update('witch')           # add elements from another iterable
        >>> d = Counter('watch')
        >>> c.update(d)                 # add elements from another counter
        >>> c['h']                      # four 'h' in which, witch, and watch
        4

        '''
        # The regular dict.update() operation makes no sense here because the
        # replace behavior results in the some of original untouched counts
        # being mixed-in with all of the other counts for a mismash that
        # doesn't have a straight-forward interpretation in most counting
        # contexts.  Instead, we implement straight-addition.  Both the inputs
        # and outputs are allowed to contain zero and negative counts.

        if not args:
            raise TypeError("descriptor 'update' of 'Counter' object "
                            "needs an argument")
        self, *args = args
        if len(args) > 1:
            raise TypeError('expected at most 1 arguments, got %d' % len(args))
        iterable = args[0] if args else None
        if iterable is not None:
            if isinstance(iterable, Mapping):
                if self:
                    self_get = self.get
                    for elem, count in iterable.items():
                        self[elem] = count + self_get(elem, 0)
                else:
                    super(Counter, self).update(iterable) # fast path when counter is empty
            else:
                _count_elements(self, iterable)
        if kwds:
            self.update(kwds)
View Code

collections模块简介

4. subtract:

作用: 减少元素重复次数

collections模块简介
def subtract(*args, **kwds):
        '''Like dict.update() but subtracts counts instead of replacing them.
        Counts can be reduced below zero.  Both the inputs and outputs are
        allowed to contain zero and negative counts.

        Source can be an iterable, a dictionary, or another Counter instance.

        >>> c = Counter('which')
        >>> c.subtract('witch')             # subtract elements from another iterable
        >>> c.subtract(Counter('watch'))    # subtract elements from another counter
        >>> c['h']                          # 2 in which, minus 1 in witch, minus 1 in watch
        0
        >>> c['w']                          # 1 in which, minus 1 in witch, minus 1 in watch
        -1

        '''
        if not args:
            raise TypeError("descriptor 'subtract' of 'Counter' object "
                            "needs an argument")
        self, *args = args
        if len(args) > 1:
            raise TypeError('expected at most 1 arguments, got %d' % len(args))
        iterable = args[0] if args else None
        if iterable is not None:
            self_get = self.get
            if isinstance(iterable, Mapping):
                for elem, count in iterable.items():
                    self[elem] = self_get(elem, 0) - count
            else:
                for elem in iterable:
                    self[elem] = self_get(elem, 0) - 1
        if kwds:
            self.subtract(kwds)
View Code

collections模块简介

二、有序字典(orderedDict):

描述: 继承了dict的所有功能,dict是无序的,orderedDict刚好对dict作了补充,记录了键值对插入的顺序,是有序字典

collections模块简介
class OrderedDict(dict):
    'Dictionary that remembers insertion order'
    # An inherited dict maps keys to values.
    # The inherited dict provides __getitem__, __len__, __contains__, and get.
    # The remaining methods are order-aware.
    # Big-O running times for all methods are the same as regular dictionaries.

    # The internal self.__map dict maps keys to links in a doubly linked list.
    # The circular doubly linked list starts and ends with a sentinel element.
    # The sentinel element never gets deleted (this simplifies the algorithm).
    # The sentinel is in self.__hardroot with a weakref proxy in self.__root.
    # The prev links are weakref proxies (to prevent circular references).
    # Individual links are kept alive by the hard reference in self.__map.
    # Those hard references disappear when a key is deleted from an OrderedDict.

    def __init__(*args, **kwds):
        '''Initialize an ordered dictionary.  The signature is the same as
        regular dictionaries, but keyword arguments are not recommended because
        their insertion order is arbitrary.

        '''
        if not args:
            raise TypeError("descriptor '__init__' of 'OrderedDict' object "
                            "needs an argument")
        self, *args = args
        if len(args) > 1:
            raise TypeError('expected at most 1 arguments, got %d' % len(args))
        try:
            self.__root
        except AttributeError:
            self.__hardroot = _Link()
            self.__root = root = _proxy(self.__hardroot)
            root.prev = root.next = root
            self.__map = {}
        self.__update(*args, **kwds)

    def __setitem__(self, key, value,
                    dict_setitem=dict.__setitem__, proxy=_proxy, Link=_Link):
        'od.__setitem__(i, y) <==> od[i]=y'
        # Setting a new item creates a new link at the end of the linked list,
        # and the inherited dictionary is updated with the new key/value pair.
        if key not in self:
            self.__map[key] = link = Link()
            root = self.__root
            last = root.prev
            link.prev, link.next, link.key = last, root, key
            last.next = link
            root.prev = proxy(link)
        dict_setitem(self, key, value)

    def __delitem__(self, key, dict_delitem=dict.__delitem__):
        'od.__delitem__(y) <==> del od[y]'
        # Deleting an existing item uses self.__map to find the link which gets
        # removed by updating the links in the predecessor and successor nodes.
        dict_delitem(self, key)
        link = self.__map.pop(key)
        link_prev = link.prev
        link_next = link.next
        link_prev.next = link_next
        link_next.prev = link_prev
        link.prev = None
        link.next = None

    def __iter__(self):
        'od.__iter__() <==> iter(od)'
        # Traverse the linked list in order.
        root = self.__root
        curr = root.next
        while curr is not root:
            yield curr.key
            curr = curr.next

    def __reversed__(self):
        'od.__reversed__() <==> reversed(od)'
        # Traverse the linked list in reverse order.
        root = self.__root
        curr = root.prev
        while curr is not root:
            yield curr.key
            curr = curr.prev

    def clear(self):
        'od.clear() -> None.  Remove all items from od.'
        root = self.__root
        root.prev = root.next = root
        self.__map.clear()
        dict.clear(self)

    def popitem(self, last=True):
        '''od.popitem() -> (k, v), return and remove a (key, value) pair.
        Pairs are returned in LIFO order if last is true or FIFO order if false.

        '''
        if not self:
            raise KeyError('dictionary is empty')
        root = self.__root
        if last:
            link = root.prev
            link_prev = link.prev
            link_prev.next = root
            root.prev = link_prev
        else:
            link = root.next
            link_next = link.next
            root.next = link_next
            link_next.prev = root
        key = link.key
        del self.__map[key]
        value = dict.pop(self, key)
        return key, value

    def move_to_end(self, key, last=True):
        '''Move an existing element to the end (or beginning if last==False).

        Raises KeyError if the element does not exist.
        When last=True, acts like a fast version of self[key]=self.pop(key).

        '''
        link = self.__map[key]
        link_prev = link.prev
        link_next = link.next
        soft_link = link_next.prev
        link_prev.next = link_next
        link_next.prev = link_prev
        root = self.__root
        if last:
            last = root.prev
            link.prev = last
            link.next = root
            root.prev = soft_link
            last.next = link
        else:
            first = root.next
            link.prev = root
            link.next = first
            first.prev = soft_link
            root.next = link

    def __sizeof__(self):
        sizeof = _sys.getsizeof
        n = len(self) + 1                       # number of links including root
        size = sizeof(self.__dict__)            # instance dictionary
        size += sizeof(self.__map) * 2          # internal dict and inherited dict
        size += sizeof(self.__hardroot) * n     # link objects
        size += sizeof(self.__root) * n         # proxy objects
        return size

    update = __update = MutableMapping.update

    def keys(self):
        "D.keys() -> a set-like object providing a view on D's keys"
        return _OrderedDictKeysView(self)

    def items(self):
        "D.items() -> a set-like object providing a view on D's items"
        return _OrderedDictItemsView(self)

    def values(self):
        "D.values() -> an object providing a view on D's values"
        return _OrderedDictValuesView(self)

    __ne__ = MutableMapping.__ne__

    __marker = object()

    def pop(self, key, default=__marker):
        '''od.pop(k[,d]) -> v, remove specified key and return the corresponding
        value.  If key is not found, d is returned if given, otherwise KeyError
        is raised.

        '''
        if key in self:
            result = self[key]
            del self[key]
            return result
        if default is self.__marker:
            raise KeyError(key)
        return default

    def setdefault(self, key, default=None):
        'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od'
        if key in self:
            return self[key]
        self[key] = default
        return default

    @_recursive_repr()
    def __repr__(self):
        'od.__repr__() <==> repr(od)'
        if not self:
            return '%s()' % (self.__class__.__name__,)
        return '%s(%r)' % (self.__class__.__name__, list(self.items()))

    def __reduce__(self):
        'Return state information for pickling'
        inst_dict = vars(self).copy()
        for k in vars(OrderedDict()):
            inst_dict.pop(k, None)
        return self.__class__, (), inst_dict or None, None, iter(self.items())

    def copy(self):
        'od.copy() -> a shallow copy of od'
        return self.__class__(self)

    @classmethod
    def fromkeys(cls, iterable, value=None):
        '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S.
        If not specified, the value defaults to None.

        '''
        self = cls()
        for key in iterable:
            self[key] = value
        return self

    def __eq__(self, other):
        '''od.__eq__(y) <==> od==y.  Comparison to another OD is order-sensitive
        while comparison to a regular mapping is order-insensitive.

        '''
        if isinstance(other, OrderedDict):
            return dict.__eq__(self, other) and all(map(_eq, self, other))
        return dict.__eq__(self, other)


try:
    from _collections import OrderedDict
except ImportError:
    # Leave the pure Python version in place.
    pass
View Code

说明:python v3.6之前的版本dict是无序的,3.6版本之后(含v3.6)dict是有序的,目测为了兼容性以及100%有序性考虑,建议实现有序功能时使用orderedDict

collections模块简介

orderedDict类补充方法:

1. clear:

作用: 清空字典

collections模块简介
 def clear(self):
        'od.clear() -> None.  Remove all items from od.'
        root = self.__root
        root.prev = root.next = root
        self.__map.clear()
        dict.clear(self)
View Code

collections模块简介

2. popitem:

作用: 有序删除,类似于栈,按照后进先出的顺序依次删除

collections模块简介
def popitem(self, last=True):
        '''od.popitem() -> (k, v), return and remove a (key, value) pair.
        Pairs are returned in LIFO order if last is true or FIFO order if false.

        '''
        if not self:
            raise KeyError('dictionary is empty')
        root = self.__root
        if last:
            link = root.prev
            link_prev = link.prev
            link_prev.next = root
            root.prev = link_prev
        else:
            link = root.next
            link_next = link.next
            root.next = link_next
            link_next.prev = root
        key = link.key
        del self.__map[key]
        value = dict.pop(self, key)
        return key, value
View Code

collections模块简介

3. pop:

作用: 删除指定键值对

collections模块简介
def pop(self, key, default=__marker):
        '''od.pop(k[,d]) -> v, remove specified key and return the corresponding
        value.  If key is not found, d is returned if given, otherwise KeyError
        is raised.

        '''
        if key in self:
            result = self[key]
            del self[key]
            return result
        if default is self.__marker:
            raise KeyError(key)
        return default
View Code

collections模块简介

 

4. move_to_end:

作用: 将指定键值对移到最后位置

collections模块简介
def move_to_end(self, key, last=True):
        '''Move an existing element to the end (or beginning if last==False).

        Raises KeyError if the element does not exist.
        When last=True, acts like a fast version of self[key]=self.pop(key).

        '''
        link = self.__map[key]
        link_prev = link.prev
        link_next = link.next
        soft_link = link_next.prev
        link_prev.next = link_next
        link_next.prev = link_prev
        root = self.__root
        if last:
            last = root.prev
            link.prev = last
            link.next = root
            root.prev = soft_link
            last.next = link
        else:
            first = root.next
            link.prev = root
            link.next = first
            first.prev = soft_link
            root.next = link
View Code

collections模块简介

 

5. setdefault:

作用: 设置默认值,默认为None,也可指定值

collections模块简介
def setdefault(self, key, default=None):
        'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od'
        if key in self:
            return self[key]
        self[key] = default
        return default
View Code

collections模块简介

 

6. update:

作用: 更新字典,有则更新,无则添加

collections模块简介

三、默认字典(defaultdict)

描述:设置values默认类型,如list、tuple

collections模块简介
class defaultdict(dict):
    """
    defaultdict(default_factory[, ...]) --> dict with default factory
    
    The default factory is called without arguments to produce
    a new value when a key is not present, in __getitem__ only.
    A defaultdict compares equal to a dict with the same items.
    All remaining arguments are treated the same as if they were
    passed to the dict constructor, including keyword arguments.
    """
    def copy(self): # real signature unknown; restored from __doc__
        """ D.copy() -> a shallow copy of D. """
        pass

    def __copy__(self, *args, **kwargs): # real signature unknown
        """ D.copy() -> a shallow copy of D. """
        pass

    def __getattribute__(self, *args, **kwargs): # real signature unknown
        """ Return getattr(self, name). """
        pass

    def __init__(self, default_factory=None, **kwargs): # known case of _collections.defaultdict.__init__
        """
        defaultdict(default_factory[, ...]) --> dict with default factory
        
        The default factory is called without arguments to produce
        a new value when a key is not present, in __getitem__ only.
        A defaultdict compares equal to a dict with the same items.
        All remaining arguments are treated the same as if they were
        passed to the dict constructor, including keyword arguments.
        
        # (copied from class doc)
        """
        pass

    def __missing__(self, key): # real signature unknown; restored from __doc__
        """
        __missing__(key) # Called by __getitem__ for missing key; pseudo-code:
          if self.default_factory is None: raise KeyError((key,))
          self[key] = value = self.default_factory()
          return value
        """
        pass

    def __reduce__(self, *args, **kwargs): # real signature unknown
        """ Return state information for pickling. """
        pass

    def __repr__(self, *args, **kwargs): # real signature unknown
        """ Return repr(self). """
        pass

    default_factory = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default
    """Factory for default value called by __missing__()."""
View Code

collections模块简介

 

四、可命名元组(namedtuple):

描述: 可通过名称访问元组中的元素,提高代码可读性

collections模块简介
def namedtuple(typename, field_names, *, verbose=False, rename=False, module=None):
    """Returns a new subclass of tuple with named fields.

    >>> Point = namedtuple('Point', ['x', 'y'])
    >>> Point.__doc__                   # docstring for the new class
    'Point(x, y)'
    >>> p = Point(11, y=22)             # instantiate with positional args or keywords
    >>> p[0] + p[1]                     # indexable like a plain tuple
    33
    >>> x, y = p                        # unpack like a regular tuple
    >>> x, y
    (11, 22)
    >>> p.x + p.y                       # fields also accessible by name
    33
    >>> d = p._asdict()                 # convert to a dictionary
    >>> d['x']
    11
    >>> Point(**d)                      # convert from a dictionary
    Point(x=11, y=22)
    >>> p._replace(x=100)               # _replace() is like str.replace() but targets named fields
    Point(x=100, y=22)

    """

    # Validate the field names.  At the user's option, either generate an error
    # message or automatically replace the field name with a valid name.
    if isinstance(field_names, str):
        field_names = field_names.replace(',', ' ').split()
    field_names = list(map(str, field_names))
    typename = str(typename)
    if rename:
        seen = set()
        for index, name in enumerate(field_names):
            if (not name.isidentifier()
                or _iskeyword(name)
                or name.startswith('_')
                or name in seen):
                field_names[index] = '_%d' % index
            seen.add(name)
    for name in [typename] + field_names:
        if type(name) is not str:
            raise TypeError('Type names and field names must be strings')
        if not name.isidentifier():
            raise ValueError('Type names and field names must be valid '
                             'identifiers: %r' % name)
        if _iskeyword(name):
            raise ValueError('Type names and field names cannot be a '
                             'keyword: %r' % name)
    seen = set()
    for name in field_names:
        if name.startswith('_') and not rename:
            raise ValueError('Field names cannot start with an underscore: '
                             '%r' % name)
        if name in seen:
            raise ValueError('Encountered duplicate field name: %r' % name)
        seen.add(name)

    # Fill-in the class template
    class_definition = _class_template.format(
        typename = typename,
        field_names = tuple(field_names),
        num_fields = len(field_names),
        arg_list = repr(tuple(field_names)).replace("'", "")[1:-1],
        repr_fmt = ', '.join(_repr_template.format(name=name)
                             for name in field_names),
        field_defs = '\n'.join(_field_template.format(index=index, name=name)
                               for index, name in enumerate(field_names))
    )

    # Execute the template string in a temporary namespace and support
    # tracing utilities by setting a value for frame.f_globals['__name__']
    namespace = dict(__name__='namedtuple_%s' % typename)
    exec(class_definition, namespace)
    result = namespace[typename]
    result._source = class_definition
    if verbose:
        print(result._source)

    # For pickling to work, the __module__ variable needs to be set to the frame
    # where the named tuple is created.  Bypass this step in environments where
    # sys._getframe is not defined (Jython for example) or sys._getframe is not
    # defined for arguments greater than 0 (IronPython), or where the user has
    # specified a particular module.
    if module is None:
        try:
            module = _sys._getframe(1).f_globals.get('__name__', '__main__')
        except (AttributeError, ValueError):
            pass
    if module is not None:
        result.__module__ = module

    return result
View Code
【示例】
>>> import colletcions                      #导入collections模块
>>> TupleName=collections.namedtuple('TupleName',['a','b','c'])  #通过namedtuple自定义一个TupleName类
>>> obj=TupleName(11,22,33)                 #通过类创建对象obj
>>> obj.a        
>>> 11                                      #通过名称访问元组中的元素
>>> obj.b
>>> 22      
>>> obj.a*obj.c  
>>> 363 

 

五、双向队列(deque):

描述: 类似于list,允许两端操作元素

collections模块简介
class deque(object):
    """
    deque([iterable[, maxlen]]) --> deque object
    
    A list-like sequence optimized for data accesses near its endpoints.
    """
    def append(self, *args, **kwargs): # real signature unknown
       # 添加元素至双向队列右侧
        """ Add an element to the right side of the deque. """
        pass

    def appendleft(self, *args, **kwargs): # real signature unknown
       # 添加元素至双向队列左侧
        """ Add an element to the left side of the deque. """
        pass

    def clear(self, *args, **kwargs): # real signature unknown
        # 清空队列
        """ Remove all elements from the deque. """
        pass

    def copy(self, *args, **kwargs): # real signature unknown
       # 浅拷贝
        """ Return a shallow copy of a deque. """
        pass

    def count(self, value): # real signature unknown; restored from __doc__
        # 统计队列中元素出现的次数
        """ D.count(value) -> integer -- return number of occurrences of value """
        return 0

    def extend(self, *args, **kwargs): # real signature unknown
       # 从队列右侧扩展,可以是list、tuple、dict(取keys)
        """ Extend the right side of the deque with elements from the iterable """
        pass

    def extendleft(self, *args, **kwargs): # real signature unknown
        # 从队列左侧扩展多个元素
        """ Extend the left side of the deque with elements from the iterable """
        pass

    def index(self, value, start=None, stop=None): # real signature unknown; restored from __doc__
       # 默认从左取值的索引位置,也可指定查询范围,若有多个相同值,则取第一个值的索引位置
        """
        D.index(value, [start, [stop]]) -> integer -- return first index of value.
        Raises ValueError if the value is not present.
        """
        return 0

    def insert(self, index, p_object): # real signature unknown; restored from __doc__
        # 任意往指定索引位置插入值
        """ D.insert(index, object) -- insert object before index """
        pass

    def pop(self, *args, **kwargs): # real signature unknown
        # 默认从队列右侧取值并移除
        """ Remove and return the rightmost element. """
        pass

    def popleft(self, *args, **kwargs): # real signature unknown
       # 从队列左侧取值并移除
        """ Remove and return the leftmost element. """
        pass

    def remove(self, value): # real signature unknown; restored from __doc__
       # 移除指定值
        """ D.remove(value) -- remove first occurrence of value. """
        pass

    def reverse(self): # real signature unknown; restored from __doc__
       # 反转排序
        """ D.reverse() -- reverse *IN PLACE* """
        pass

    def rotate(self, *args, **kwargs): # real signature unknown
       # 移动队列中的元素,若n<0,则将左侧n个元素依次移至队列最右侧,反之,若n>0,则将队列右侧n个元素依次移至队列最左侧
        """ Rotate the deque n steps to the right (default n=1).  If n is negative, rotates left. """
        pass

    def __add__(self, *args, **kwargs): # real signature unknown
        """ Return self+value. """
        pass

    def __bool__(self, *args, **kwargs): # real signature unknown
        """ self != 0 """
        pass

    def __contains__(self, *args, **kwargs): # real signature unknown
        """ Return key in self. """
        pass

    def __copy__(self, *args, **kwargs): # real signature unknown
        """ Return a shallow copy of a deque. """
        pass

    def __delitem__(self, *args, **kwargs): # real signature unknown
        """ Delete self[key]. """
        pass

    def __eq__(self, *args, **kwargs): # real signature unknown
        """ Return self==value. """
        pass

    def __getattribute__(self, *args, **kwargs): # real signature unknown
        """ Return getattr(self, name). """
        pass

    def __getitem__(self, *args, **kwargs): # real signature unknown
        """ Return self[key]. """
        pass

    def __ge__(self, *args, **kwargs): # real signature unknown
        """ Return self>=value. """
        pass

    def __gt__(self, *args, **kwargs): # real signature unknown
        """ Return self>value. """
        pass

    def __iadd__(self, *args, **kwargs): # real signature unknown
        """ Implement self+=value. """
        pass

    def __imul__(self, *args, **kwargs): # real signature unknown
        """ Implement self*=value. """
        pass

    def __init__(self, iterable=(), maxlen=None): # known case of _collections.deque.__init__
        """
        deque([iterable[, maxlen]]) --> deque object
        
        A list-like sequence optimized for data accesses near its endpoints.
        # (copied from class doc)
        """
        pass

    def __iter__(self, *args, **kwargs): # real signature unknown
        """ Implement iter(self). """
        pass

    def __len__(self, *args, **kwargs): # real signature unknown
        """ Return len(self). """
        pass

    def __le__(self, *args, **kwargs): # real signature unknown
        """ Return self<=value. """
        pass

    def __lt__(self, *args, **kwargs): # real signature unknown
        """ Return self<value. """
        pass

    def __mul__(self, *args, **kwargs): # real signature unknown
        """ Return self*value.n """
        pass

    @staticmethod # known case of __new__
    def __new__(*args, **kwargs): # real signature unknown
        """ Create and return a new object.  See help(type) for accurate signature. """
        pass

    def __ne__(self, *args, **kwargs): # real signature unknown
        """ Return self!=value. """
        pass

    def __reduce__(self, *args, **kwargs): # real signature unknown
        """ Return state information for pickling. """
        pass

    def __repr__(self, *args, **kwargs): # real signature unknown
        """ Return repr(self). """
        pass

    def __reversed__(self): # real signature unknown; restored from __doc__
        """ D.__reversed__() -- return a reverse iterator over the deque """
        pass

    def __rmul__(self, *args, **kwargs): # real signature unknown
        """ Return self*value. """
        pass

    def __setitem__(self, *args, **kwargs): # real signature unknown
        """ Set self[key] to value. """
        pass

    def __sizeof__(self): # real signature unknown; restored from __doc__
        """ D.__sizeof__() -- size of D in memory, in bytes """
        pass

    maxlen = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default
    """maximum size of a deque or None if unbounded"""


    __hash__ = None
View Code

deque类中包含方法:

1. append:

作用: 从队列右侧添加元素

collections模块简介
【示例】
>>> import collections
>>> deq=collections.deque('abcd')
>>> deq
>>> deque(['a','b','c','d'])
>>> deq.append(11)
>>> deq
>>> deque(['a','b','c','d',11])
collections模块简介

2.appendleft:

作用: 从队列左侧添加元素

collections模块简介
【示例】
>>> import collections
>>> deq=collections.deque('abcd')
>>> deq
>>> deque(['a','b','c','d'])
>>> deq.appendleft(12)
>>> deq
>>> deque([12,'a','b','c','d'])
collections模块简介

3.clear:

作用: 清空队列

collections模块简介
【示例】
>>> import collections
>>> deq=collections.deque('abcd')
>>> deq
>>> deque(['a','b','c','d'])
>>> deq.clear()
>>> deq
>>> deque([])
collections模块简介

 

4. count:

作用: 统计队列中元素个数

collections模块简介
【示例】
>>> import collections
>>> deq=collections.deque('abcdaa')
>>> deq
>>> deque(['a','b','c','d','a','a'])
>>> deq.count('a')
>>> 3
collections模块简介

 

5.extend:

作用: 从队列右侧扩展

collections模块简介
【示例】
>>> import collections


                    
                
(0)
打赏 collections模块简介 微信扫一扫

相关文章:

版权声明:本文内容由互联网用户贡献,该文观点仅代表作者本人。本站仅提供信息存储服务,不拥有所有权,不承担相关法律责任。 如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 2386932994@qq.com 举报,一经查实将立刻删除。

发表评论

collections模块简介
验证码: collections模块简介