欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python编程线性回归代码示例

程序员文章站 2022-04-24 18:33:55
 用python进行线性回归分析非常方便,有现成的库可以使用比如:numpy.linalog.lstsq例子、scipy.stats.linregress例子、p...

 用python进行线性回归分析非常方便,有现成的库可以使用比如:numpy.linalog.lstsq例子、scipy.stats.linregress例子、pandas.ols例子等。

不过本文使用sklearn库的linear_model.LinearRegression,支持任意维度,非常好用。

一、二维直线的例子

预备知识:线性方程y=a∗x+b。y=a∗x+b表示平面一直线

下面的例子中,我们根据房屋面积、房屋价格的历史数据,建立线性回归模型。

然后,根据给出的房屋面积,来预测房屋价格。这里是数据来源

import pandas as pd 
from io import StringIO  
from sklearn import linear_model  
import matplotlib.pyplot as plt 
# 房屋面积与价格历史数据(csv文件) 
csv_data = 'square_feet,price\n150,6450\n200,7450\n250,8450\n300,9450\n350,11450\n400,15450\n600,18450\n' 
 
# 读入dataframe 
df = pd.read_csv(StringIO(csv_data)) 
print(df)  
# 建立线性回归模型 
regr = linear_model.LinearRegression()  
# 拟合 
regr.fit(df['square_feet'].reshape(-1, 1), df['price']) # 注意此处.reshape(-1, 1),因为X是一维的! 
# 不难得到直线的斜率、截距 
a, b = regr.coef_, regr.intercept_ 
 
# 给出待预测面积 
area = 238.5 
 
# 方式1:根据直线方程计算的价格 
print(a * area + b) 
# 方式2:根据predict方法预测的价格 
print(regr.predict(area))  
# 画图 
# 1.真实的点 
plt.scatter(df['square_feet'], df['price'], color='blue')  
# 2.拟合的直线 
plt.plot(df['square_feet'], regr.predict(df['square_feet'].reshape(-1,1)), color='red', linewidth=4) 
 
plt.show() 

python编程线性回归代码示例

二、三维平面的例子

预备知识:线性方程z=a∗x+b∗y+c。z=a∗x+b∗y+c 表示空间一平面

由于找不到真实数据,只好自己虚拟一组数据。

import numpy as np  
from sklearn import linear_model  
from mpl_toolkits.mplot3d import Axes3D 
import matplotlib.pyplot as plt  
xx, yy = np.meshgrid(np.linspace(0,10,10), np.linspace(0,100,10)) 
zz = 1.0 * xx + 3.5 * yy + np.random.randint(0,100,(10,10))  
# 构建成特征、值的形式 
X, Z = np.column_stack((xx.flatten(),yy.flatten())), zz.flatten() 
 
# 建立线性回归模型 
regr = linear_model.LinearRegression() 
 
# 拟合 
regr.fit(X, Z) 
# 不难得到平面的系数、截距 
a, b = regr.coef_, regr.intercept_  
# 给出待预测的一个特征 
x = np.array([[5.8, 78.3]])  
# 方式1:根据线性方程计算待预测的特征x对应的值z(注意:np.sum) 
print(np.sum(a * x) + b)  
# 方式2:根据predict方法预测的值z 
print(regr.predict(x))  
# 画图 
fig = plt.figure() 
ax = fig.gca(projection='3d')  
# 1.画出真实的点 
ax.scatter(xx, yy, zz) 
# 2.画出拟合的平面 
ax.plot_wireframe(xx, yy, regr.predict(X).reshape(10,10)) 
ax.plot_surface(xx, yy, regr.predict(X).reshape(10,10), alpha=0.3) 

plt.show() 

效果图

python编程线性回归代码示例

总结

以上就是本文关于python编程线性回归代码示例的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

python八大排序算法速度实例对比

详解K-means算法在Python中的实现

Python算法之图的遍历

如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!