欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  科技

余凯:智能不等于智慧 别说计算机比人聪明

程序员文章站 2022-04-24 16:22:13
文/余凯互联网时代的到来,人类科技的发展必然带来一定的便利,但是一旦机器变得比人还聪明之后,除了人类的灵性大幅度提升之外,还可以有怎样的解决方法?我在互联网工作这么长时间,我们来看看互联网到底改变了什...

文/余凯

互联网时代的到来,人类科技的发展必然带来一定的便利,但是一旦机器变得比人还聪明之后,除了人类的灵性大幅度提升之外,还可以有怎样的解决方法?我在互联网工作这么长时间,我们来看看互联网到底改变了什么?

互联网改变了什么?

余凯:智能不等于智慧 别说计算机比人聪明

互联网的本质就像微信App一开启时就显示的图片一样,具有深刻的哲学思辨在里面:在纷繁复杂的世界里面,我们和世界是什么关系呢?就这个问题的解决,孔子提出“仁”,宗教提出“彼岸世界”,互联网提出“人和世界的连接”,连接人和世界的时候,包括连接人和信息(比如百度)、人和商品(比如亚马逊、淘宝)、人和人(比如微信)、人和服务(比如滴滴、Uber),从而催生大的行业机会,发生了很多伟大的事情,产生了巨大的社会价值。连接才是首要,拥有并不关键,高效连接才是有用的,这也是互联网给世界带来的最大变化。

一切的连接都需要通过媒介,互联网是通过PC、手机、智能硬件、汽车等等,它延展你的能力,使人和世界的连接更加紧密。这里有两个关键的问题要解决:人如何用自然的方式和机器交互?机器如何更好地索引世界,成为人的朋友?这两者背后的支撑点都是大数据。

交互领域里面诞生了世界上最伟大的公司:苹果,在连接人和世界的链条里面,苹果让人和机器更紧密,依次从键盘、鼠标再到触摸、语音、手势。那么,未来交互的终极形态是什么?是心灵感应、脑机交互。

索引领域里面也诞生了世界上最伟大的公司:谷歌,市值5000亿美金。索引的趋势是:从无序到有序,让无结构化的信息变得有序,方便人们获取;从数据到语义,方便人们了解数据背后的内容是什么;从线下到线上,检索虚拟信息、商品信息、线下服务信息。

余凯:智能不等于智慧 别说计算机比人聪明

所有的这些都和机器的进化实实在在有关,即:从个人电脑到智能手机时代,再分化出智能硬件,最后的趋势就是“智能助手”概念,它可以帮你完成很多事情,像你的真正助理,打点你的一切。

那么,未来是怎样的?连接人和世界,完成交互和索引,人和机器完全融为一体,没有距离,机器变成robot(在计算机控制下具有自主行为的机器),它完全懂你此刻在想什么,然后自主地完成你想做的事情。当然,这需要无处不在的传感器和强大的计算能力。

大家经常问我一个问题:机器变聪明之后,是否会对人类造成威胁?我回答,有可能,它在很多方面可能超出人类,比如对机器而言,学习是瞬间的,只需要光纤网络传输,而我要把我的知识传递给我身边的朋友,需要通过语言、反复的交流以及很长的时间,他才能够真正地理解,机器却可以马上被制造出来并复制知识、交流知识,未来它对人类会真正产生威胁。

我认为救赎的方式只有一条,唯一的机会就是在交互上取得突破性的进展,使人和机器的交互是零距离的。如果是这样的情况,那你也可以具有机器的能力,比如把小芯片装在你的身体里面。

怎么在交互上取得突破性的进展?我们来看看目前在科技上人类取得的一些成就。

关于强人工智能的哲学思辨

余凯:智能不等于智慧 别说计算机比人聪明

什么是人工智能技术?人工智能发生到什么程度了?前几天在国家会议中心有一场机器人大会,机器人长得跟人一样,惟妙惟肖。那么,对于人工智能,究竟什么事情是可以实现的?什么是为之过早的?什么是我们不用担心的?今天的人工智能处于萌芽期,处于“润物细无声”、“濛濛细雨”的状态,但我们还是能隐约听到轰隆隆的雷声。

我有时在想,人类竟然是唯一登上月球的生命物种,为什么不是别的物种?那是因为我们有非凡的大脑。这就是我们对自身的奥秘那么痴迷的原因,于是我们就在想:是否可以通过数学、技术复制人类非凡的大脑和智力,这也是人工智能的着迷之处。从整个信息技术的发展来看,从信息理论到图灵测试,再到通讯技术的发展,再到计算机信息科学,所有的发展到最后都是为了一件事情:我们能不能通过计算让机器具有智能功能?

那么,什么是人工智能?首先,它具有感知的能力,身上装有传感器,能够感知到环境的变化;其次是理解力,从感知阶段上升到对世界的理解;第三是决策,通过从世界获得的信号上升为理解之后做出决策。

余凯:智能不等于智慧 别说计算机比人聪明

其实,搜索引擎也是一个人工智能系统,因为它有一个非常精致的结构:

它拥有感知能力,借助免费服务,用户都在给搜索引擎提供数据,真实的信息也因此在不断分层,即外显信息(在社交上晒出的)、部分信息(在特定地方分享)、隐私信息。互联网最精巧的商业模式之一就是拿着用户信息实现商业价值,正因为对用户的了解足够正确,就可以推出符合用户当下的广告或商品。这中间就是一个强大的系统,基于大数据的人工智能系统构建了一个桥梁,所以搜索引擎和“瓦力”机器人都具有典型的人工智能的几个方面。

讲到人工智能,我们都会看到一个浪漫主义的观点,也就是“强人工智能”,即拥有跟人一样的智能,有强大的学习能力。图灵测试是伟大科学家图灵提出来的,他怎么定义“强人工智能”呢?他说,如果现在搁着一块布,你不知道幕布背后是机器人还是人,如果你无法辨别,对方就具有强人工智能。

微软小冰(微软的人工智能伴侣虚拟机器人)做得不错,但是多聊几句话后就会发现,小冰系统更擅长插科打诨,严肃的对话很难进行下去。现在会看到很多通过图灵测试的报道,其实都是胡扯的,我们今天的算法离真正意义上的“强人工智能”还差很远。

另外一种观点,即机器人具备部分的人工智能,我们称之为“弱人工智能”,它在某个不确定性的环境下能够做一些事情。具备部分智能的机器人是目前工业界的主流观点,只要能产生实实在在的智能,就有价值了。

余凯:智能不等于智慧 别说计算机比人聪明

关于什么是人工智能,大家常常有哲学思辨的热情。历史上有一个著名的讨论,叫做“思想实验”,它讲的是:一个房间里面关着一个英国人,从来不知道中文和中国的任何事情,然后房间的桌子上面有一本书让他认知,这时从门外递进一张英文的条子,让他到神奇的书里面查阅后写出一份中文的翻译,结果他写出来了。这看起来这很智能,但是这个英国人并不懂中文,他写出翻译这个外表的行为是不是他内在真正的智能呢?行为上面表现的智能并不是真正的智能。我个人认可另外一种回答,也就是这个英国人不懂中文,但是“英国人+书+房间”,这个系统是智能的。

什么是Robot?我们中文把它翻译成机器人,我认为这个翻译是有误导性的,不够准确。剑桥辞典的翻译是:“在计算机控制下具有自主行为的机器”。我们再看Android(安卓),它的意义是:“长得像人的robot”,也就是Android才应该翻译成机器人。什么是robot?什么是普通的machine(机器)?

按照确定性和固定的程序进行操作,具备一致性的产品是机器,在传感器指引下能够感应、自适应不确定性环境的机器,就是robot,它具有很大的市场,已经有一大批的公司拥有了大市值。工业4.0会讲到C2M(顾客对工厂),用户的个性化订单直接反映到工厂生产,每个商品背后是具体的用户订单需求,在这种情况需要强大的robot流水线。

在大城市,你永远面对不确定性的车况,如果一个机器能够自主地驾驶,在不确定的环境中去捕捉瞬间的变化,然后转化为对路况的理解,然后形成控制的决策,这就是robot,所以robot需要长得像人吗?我们面临的机器人产业是非常宽泛的。

余凯:智能不等于智慧 别说计算机比人聪明

1956年,AI这个词汇诞生,当时科技领域的先贤者召开了AI会议,提出了非常有远见的思考:怎么让机器仿真,实现智能?当然,他们的思想不是最早的,更早可以追溯到莱布尼茨,他最早提出通过数据演算出智能能力。

这些先贤者不仅有远见,而且还过分乐观,他们认为智能的基本问题可以在一个夏天解决,但是这个问题解决了吗?没有。*词条“AI winter”列出了很多失败案例,为什么在长达的五六十年里面煽起大家那么多的热情,却没有产生我们期待的路径呢?

过去绝大部分的AI系统,更多以科学演绎的方式,演绎的概念就是类似“一生二,二生三,三生万物”,从一个基本法则出发,推导出一个纷繁复杂的系统(归纳是从纷繁复杂的世界提炼出简单的规律。以前受自然科学的研究影响,都是以不言自明的公理出发研究,比如认定上帝造人,但是以这样的思维出发会导致人工智能过于简单)。传统基于规则的AI系统没有成果,形成了很多的教训:

余凯:智能不等于智慧 别说计算机比人聪明

教训1:这个世界是纷繁的,存在着很多因素和要素,彼此之间有复杂的影响,形成复杂的网络和系统,这难以用一个公式来描述;

教训2:有很多因素和参量,你观测不到,所以系统具备不确定性。现实以概率运行,如果你用确定性的规则,没办法掌握这样的复杂系统,我们要采用基于统计的概念;

教训3:现实世界纷繁复杂,你很难完整描述,从数据中不断学习、对问题的理解,从而随着数据演化和进化是关键,这也就是我们今天讲的大数据时代的意义所在,本质上数据提供了我们了解世界的可能。随着数据演化,学习能力是一个关键。

我认为过去60年AI的一个总结是:基于规则的系统,统治了过去的AI时代。现在需要进入数据驱动的系统,把数据导到机器里面,机器通过消化和吸收生成对世界认知的模型。

我们再探讨些本质性的AI问题,归结出最简单的形式:通过观测到的现象、数据、知识,映射成预测、判断。比如,你输入一个图像,然后输出“物体”的名字,这样的映射就是图像识别;你输入一个语音讯号,然后输出“文本序列”,这是语音识别;你输入一段话,然后输出“解析的树状结构”,这是自然云储;你输入车辆行使周边路况的情况,然后输出“控制决策”,这是自动驾驶。

余凯:智能不等于智慧 别说计算机比人聪明

我们面临的很多问题是:如何从数据中学习映射函数,形成训练样本?比如把多个图片定义为“长颈鹿”的标签,系统通过训练学习,然后再给出类似的新图片的时候,该图片也能自动打上这个标签。

从有限推导无限,是不可能的,除非你提出假设,没有假设,就没办法做出判断。在古代,古人的智慧说“近朱者赤,近墨者黑”,就蕴涵了一个朴素的智慧,就是判断的时候一定隐含了假设:两个在某些方面相似的人,在其它方面具有相似的特征和特性。

这就反映到人工智能大数据学习的本质问题:假设的合理性。我们希望从数据得出的结论是简单的、光滑的,而不是复杂的,所以哲学上有一个词汇:剃刀原理,也就是能够同时解释某个现象的几条规律里面,我们喜欢选择其中最简单的规律。总而言之,我们希望能够找到一个规律,既能找到观测的样本,又得出简单的结果。

余凯:智能不等于智慧 别说计算机比人聪明

如何从纷繁复杂的样本中去抽取规律?做得最好的就是人类的大脑,能够举一反三、不断学习。这个学习中最简单的单元就是神经元,它有很多神经簇,和其它神经元相连,神经元接收到外部的信息输入后,把对信息信号的反应通过神经末梢传到其它神经元。

这个构造可以用一个简单的数学公式描述:感知机模型,基于单个神经元构造具有学习能力的人工智能系统,它像神经元一样,从外界获得输入后,传递到*处理的地方,通过简单的运算再向外输出。

今天,这个简单的模型正向几个维度扩展,也就是从线性的输入输出,发展到深度神经网络,最后形成具备学习功能的人工智能系统。

深度学习为何应该受到重视?

我们最近经常听到“深度学习”,在最大规模的互联网公司如谷歌、微软、脸书、百度等等都在运作,并产生巨大的商业价值,它让自动驾驶等过去不可想象的事情变得触手可及。这样的技术为什么应该受到重视?

1、模拟人类大脑的分层结构以及行为

余凯:智能不等于智慧 别说计算机比人聪明

我们今天发现了基于视觉的神经网络(科学家在研究过程中受到了大脑内视觉信息分层表述的启发。随着视觉输入流从视网膜传输到初级视皮层,再到下颞叶皮质,在识别物体前,每层都会进行处理,从而准确地识别物体),因此可以用数据训练系统,让系统能够反映出视觉神经网络的结构和行为。为了模拟这一过程,神经网络的设计者们在模型中设计了几层计算,刚开始,最底层的神经元对颜色不敏感,对边界和朝向敏感,它能复原出物体的轮廓,把轮廓提取出来,上面一层的神经元具备一些更有意思的行为,对物体的部位很敏感,更高一层的神经元对物体开始敏感,它是一个逐层的、从局部到整体的敏感过程。这就是从数据开始呈现的视觉网络行为。

在听觉神经系统里面有类似的现象,我们用数据的深度训练也得到类似的现象结果。

2、深度学习特别适合大数据

过去的模型和方法对于大数据的处理是不好的,通常我们衡量一个模型的好坏是用推广误差进行测试。通过推广误差找到原因并得到控制,从而找到一个更好的学习办法。推广误差来自于几个方面:

余凯:智能不等于智慧 别说计算机比人聪明

来源之一是对模型进行假设,但是模型假设是没有最完美的,所以肯定有误差。在概率统计学有一个著名的说法:你所有的模型都是错的,但有些模型是有用的;

来源之二是数据的不完美,样本有限,或者有噪声,或者有偏差。这两种不完美都会带来误差,因为典型的统计学范畴忽略了一点:假设了无限的计算资源,这是来源之三。计算机科学做的是实际问题,就会导致计算的不完美,就会导致误差,所以你要尽量让你的假设完美,让你的假设足够宽泛,收集大量的数据,寻求算法处理大数据。

余凯:智能不等于智慧 别说计算机比人聪明

传统人工智能算法不能处理更大规模的数据,因为如果算法的复杂性和样本是立方的关系,当计算机设备数量和样本成同比立方增长的时候,意味着数据增加了,算法就更难了。这就是为什么深度学习应该受到重视,它特别适应大数据,数据越大,算法越好。

3、深度学习是一套灵活的建模语言

怎么写出一篇好文章,和如何做出一个好的人工智能系统,是相通的,就是对语言有足够灵活的驾御能力、需要对所面临的生活和问题有深刻的感悟和思想,灵活的建模语言和内在洞察相结合,才能够做好。

深度学习是历史上第一次出现的端到端学习,不管是语音识别还是从感知、预处理到预测、判断,过去绝大部分的工作是做最后一个部分,而没有完成前面的几个动作。从计算上面来讲,在没有深度学习之前,上面几个步骤是消耗计算资源的、人工手动的,但是深度学习是一气呵成的,减少人工手动。这个变化是革命性的,今天这已经成为共识了。

4、深度学习的成功应用

我们来看看一些成功的应用,比如在计算机领域的图像识别,从最原始的输入图像出发,然后中间不断抽取数据、变换、训练。

余凯:智能不等于智慧 别说计算机比人聪明

Image Net是是一个计算机视觉系统识别项目, 是目前世界上图像识别最大的数据库。从2010年,它的水平在不断提升。最大的进展发生在2012年,因为深度学习的接入带来巨大的提升,但是计算机比人更聪明吗?不是,它是比普通人识别更多,但绝对比不过专业人,它绝对没有比人更聪明,计算机是在某件事情上优化一件事情,但不代表整体上比人更强。

现在,技术可以识别非常潦草的手写电话号码、任意方向的文字检测、人脸识别(如基于深度学习的人脸识别技术:百度魔图),甚至做一些更严肃的事情,比如自动驾驶。现在很多公司都在做自动驾驶,听起来很科幻的事情,但是业界推进的速度非常快。

汽车有两大趋势:新能源和智能化。这两个趋势无可阻挡,汽车也变成了机器人,视觉处理显得尤其重要,对于安全而言,最重要的是处理未知,做到全方位的感知,预见情况。

余凯:智能不等于智慧 别说计算机比人聪明

语音识别也是另外一个应用,目前句子的理解力在75%左右,如果能达到90%就非常可怕。从音速特征、语言特征到最后的文字识别结果,语音识别为什么这几年会快速成长?这是因为在前端植入语音神经网络的小尝试,使语音识别可用,带来革命性的变化。基于深度学习的语音识别,可用于地图导航、输入法、移动搜索。

怎么去理解自然语言呢?传统的做法是把大问题分解成独立的子问题,然后分别做出分析。现在新的系统是用一个完整的深度学习模型,它可以对句子进行语义的关联阐释,从而训练一个对话系统,我们可以用好莱坞人物的对白进行训练。我们甚至可以把语言和视觉结合在一起,因为我们对世界的认知能力在语言认知和视觉认知能力上,是同步发展的。计算机今天看到图片也可以开始产生语言文本了,做到同时理解图像和自然语言。

而在有的场景,云端处理是不够的。未来人工智能发展的趋势,它的前端部署是偏感知的,后台偏大数据认知,比如自动驾驶,周围200米范围内的一举一动,都通过前端的传感器感知决策,5公里以外的情况是通过云端的大数据分析来获得认知,于是形成前后端的结合。

余凯:智能不等于智慧 别说计算机比人聪明

回到一个问题:人类大脑是通用处理器吗?人从猴子到现在的人类,人之所以能够从物种中脱颖而出,是因为大脑对人类所需要特殊能力不断进行优化。除此之外的,是大脑是不擅长的,本质上来说,大脑是专用处理器,并非通用处理器。

大脑的计算是很慢的,但是人怎么会开车、打乒乓球?是因为对这些问题进行了加速处理。今天我们为什么有一些事情处理得特别好?因为我们在结构上做了专门的优化。

我们现在做的地平线机器人技术,是为了帮机器人开发专用处理器,我们希望将它的性能提升1000倍,希望硬件可以支撑这样的应用,让效果变得更好。

智能不等于智慧

余凯:智能不等于智慧 别说计算机比人聪明

人工智能大规模的应用伴随着互联网的发展,在第一个10年(2000-2009年)是“润物细无声”的时代,最大的应用在于PC互联网,比如搜索、广告、推荐。

我们当前所处的10年(2010-2019年),语音、图像、语音、机器人操作获得突飞猛进的发展,同时在改造传统行业,越来越多地被人所感知,这是一个于“无声处听惊雷”的时代。

后面的10年(2020-2029年)是一个很灿烂的时代,是“*如此多娇”、交互无处不在的时代,人跟机器的操作距离越来越短,生产线的工人一定会被替代,该机器做的事情,让机器做,该人做的事情让人做。简单、重复性的工作需要被解放,从万物互联到万物智能,数据成为商品。我们不需要对机器有太多的担心,2029年的机器没有好奇心、没有情感、没有自我意识。

余凯:智能不等于智慧 别说计算机比人聪明

我的结论是:智能不等于智慧。我认为在未来,从万物互联到万物智能有三大趋势:所有设备都有智能传感器、所有设备都有云端结合、所有设备都连接人和服务。所有设备最终都成为广义的机器人系:感知、理解、决策。

伟大的技术不在于让机器更伟大,而在于让每个平凡的人变得更伟大。

本文转自:杨剑勇,经余凯授权 首发:笔记侠 活动:颠覆式创新研习社

(杨剑勇:创感物联网创建人、物联网资深人士)

上一篇: 876. 链表的中间结点

下一篇: 函数