信号量Semaphore实现原理
semaphore用于管理信号量,在并发编程中,可以控制返访问同步代码的线程数量。semaphore在实例化时传入一个int值,也就是指明信号数量。主要方法有两个:acquire()和release()。acquire()用于请求信号,每调用一次,信号量便少一个。release()用于释放信号,调用一次信号量加一个。信号量用完以后,后续使用acquire()方法请求信号的线程便会加入阻塞队列挂起。本篇简单分析semaphore的源码,说明其实现原理。
semaphore对于信号量的控制是基于aqs(abstractqueuedsynchronizer)来做的。semaphore有一个内部类sync继承了aqs。而且semaphore中还有两个内部类fairsync和nonfairsync继承sync,也就是说semaphore有公平锁和非公平锁之分。以下是semaphore中内部类的结构:
看一下semaphore的两个构造函数:
public semaphore(int permits) { sync = new nonfairsync(permits); } public semaphore(int permits, boolean fair) { sync = fair ? new fairsync(permits) : new nonfairsync(permits); }
默认是非公平锁。两个构造方法都必须传int permits值。
这个int值在实例化内部类时,被设置为aqs中的state。
sync(int permits) { setstate(permits); }
一、acquire()获取信号
内部类sync调用aqs中的acquiresharedinterruptibly()方法
public final void acquiresharedinterruptibly(int arg) throws interruptedexception { if (thread.interrupted()) throw new interruptedexception(); if (tryacquireshared(arg) < 0) doacquiresharedinterruptibly(arg); }
- 调用tryacquireshared()方法尝试获取信号。
- 如果没有可用信号,将当前线程加入等待队列并挂起
tryacquireshared()方法被semaphore的内部类nonfairsync和fairsync重写,实现有一些区别。
nonfairsync.tryacquireshared()
final int nonfairtryacquireshared(int acquires) { for (;;) { int available = getstate(); int remaining = available - acquires; if (remaining < 0 || compareandsetstate(available, remaining)) return remaining; } }
可以看到,非公平锁对于信号的获取是直接使用cas进行尝试的。
fairsync.tryacquireshared()
protected int tryacquireshared(int acquires) { for (;;) { if (hasqueuedpredecessors()) return -1; int available = getstate(); int remaining = available - acquires; if (remaining < 0 || compareandsetstate(available, remaining)) return remaining; } }
- 先调用hasqueuedpredecessors()方法,判断队列中是否有等待线程。如果有,直接返回-1,表示没有可用信号
- 队列中没有等待线程,再使用cas尝试更新state,获取信号
再看看acquiresharedinterruptibly()方法中,如果没有可用信号加入队列的方法doacquiresharedinterruptibly()
private void doacquiresharedinterruptibly(int arg) throws interruptedexception { final node node = addwaiter(node.shared); // 1 boolean failed = true; try { for (;;) { final node p = node.predecessor(); if (p == head) { // 2 int r = tryacquireshared(arg); if (r >= 0) { setheadandpropagate(node, r); p.next = null; // help gc failed = false; return; } } if (shouldparkafterfailedacquire(p, node) && // 3 parkandcheckinterrupt()) throw new interruptedexception(); } } finally { if (failed) cancelacquire(node); } }
- 封装一个node节点,加入队列尾部
- 在无限循环中,如果当前节点是头节点,就尝试获取信号
- 不是头节点,在经过节点状态判断后,挂起当前线程
二、release()释放信号
public final boolean releaseshared(int arg) { if (tryreleaseshared(arg)) { // 1 doreleaseshared(); // 2 return true; } return false; }
- 更新state加一
- 唤醒等待队列头节点线程
tryreleaseshared()方法在内部类sync中被重写
protected final boolean tryreleaseshared(int releases) { for (;;) { int current = getstate(); int next = current + releases; if (next < current) // overflow throw new error("maximum permit count exceeded"); if (compareandsetstate(current, next)) return true; } }
这里也就是直接使用cas算法,将state也就是可用信号,加1。
看看semaphore具体的使用示例:
public static void main(string[] args) { threadpoolexecutor threadpool = new threadpoolexecutor(10, 10, 0l, timeunit.milliseconds, new linkedblockingqueue<runnable>(10)); //信号总数为5 semaphore semaphore = new semaphore(5); //运行10个线程 for (int i = 0; i < 10; i++) { threadpool.execute(new runnable() { @override public void run() { try { //获取信号 semaphore.acquire(); system.out.println(thread.currentthread().getname() + "获得了信号量,时间为" + system.currenttimemillis()); //阻塞2秒,测试效果 thread.sleep(2000); system.out.println(thread.currentthread().getname() + "释放了信号量,时间为" + system.currenttimemillis()); } catch (interruptedexception e) { e.printstacktrace(); } finally { //释放信号 semaphore.release(); } } }); } threadpool.shutdown(); }
代码结果为:
pool-1-thread-2获得了信号量,时间为1550584196125 pool-1-thread-1获得了信号量,时间为1550584196125 pool-1-thread-3获得了信号量,时间为1550584196125 pool-1-thread-4获得了信号量,时间为1550584196126 pool-1-thread-5获得了信号量,时间为1550584196127 pool-1-thread-2释放了信号量,时间为1550584198126 pool-1-thread-3释放了信号量,时间为1550584198126 pool-1-thread-4释放了信号量,时间为1550584198126 pool-1-thread-6获得了信号量,时间为1550584198126 pool-1-thread-9获得了信号量,时间为1550584198126 pool-1-thread-8获得了信号量,时间为1550584198126 pool-1-thread-1释放了信号量,时间为1550584198126 pool-1-thread-10获得了信号量,时间为1550584198126 pool-1-thread-5释放了信号量,时间为1550584198127 pool-1-thread-7获得了信号量,时间为1550584198127 pool-1-thread-6释放了信号量,时间为1550584200126 pool-1-thread-8释放了信号量,时间为1550584200126 pool-1-thread-10释放了信号量,时间为1550584200126 pool-1-thread-9释放了信号量,时间为1550584200126 pool-1-thread-7释放了信号量,时间为1550584200127
可以看到,最多5个线程获得信号,其它线程必须等待获得信号的线程释放信号。
下一篇: vue.js入门学习