欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

R语言的xtabs函数实例讲解

程序员文章站 2022-04-23 20:16:58
今天在做一个列联表独立性检验的时候,总是无法处理好要求的数据类型,偶然的机会,看到了xtabs()函数,感觉很适合用来做列联表,适合将一列数据转换成列联表。shifou <- c("yes","...

今天在做一个列联表独立性检验的时候,总是无法处理好要求的数据类型,偶然的机会,看到了xtabs()函数,感觉很适合用来做列联表,适合将一列数据转换成列联表。

shifou <- c("yes","yes","no","no")
xinbie <- c("nan","nv","nan","nv")
freq <- c(34,38,28,50)
(exer6_2 <- data.frame(shifou,xinbie,freq))
(count22 <- xtabs(freq~.,data = exer6_2))#这个点表示shifou + xinbie,这个和lm()用法差不多
assocstats(count22)

运行过程与结果如下:

> shifou <- c("yes","yes","no","no")#是否逃课
> xinbie <- c("nan","nv","nan","nv")#性别
> freq <- c(34,38,28,50)
> (exer6_2 <- data.frame(shifou,xinbie,freq))#“nan”表示男,“nv”表示女,yes表示逃课,no表示不逃课
 shifou xinbie freq
1  yes  nan  34
2  yes   nv  38
3   no  nan  28
4   no   nv  50
> (count22 <- xtabs(freq~.,data = exer6_2))#这个数据表示性别与性别是否有关
   xinbie
shifou nan nv
  no  28 50
  yes 34 38
> assocstats(count22)
          x^2 df p(> x^2)
likelihood ratio 1.9830 1 0.15908
pearson     1.9802 1 0.15937<br>#这个p值为0.15937大于0.05,表示与性别没有关系
 
phi-coefficient  : 0.115
contingency coeff.: 0.114
cramer's v    : 0.115

接下来,创建一个更加难的数据集

(价格 <- rep(c("10万以下","10~20万","20~30万","30万以上"),each = 3))
(地区 <- rep(c("东部","中部","西部"),each = 1,times = 4))
(数量 <- c(20,40,40,50,60,50,30,20,20,40,20,10))
(销售情况 <- data.frame(价格,地区,数量))
(count2 <- xtabs(数量 ~ (价格 + 地区),data = 销售情况))

运算过程:

> (价格 <- rep(c("10万以下","10~20万","20~30万","30万以上"),each = 3))
 [1] "10万以下" "10万以下" "10万以下" "10~20万" "10~20万" "10~20万" "20~30万"
 [8] "20~30万" "20~30万" "30万以上" "30万以上" "30万以上"
> (地区 <- rep(c("东部","中部","西部"),each = 1,times = 4))
 [1] "东部" "中部" "西部" "东部" "中部" "西部" "东部" "中部" "西部" "东部" "中部"
[12] "西部"
> (数量 <- c(20,40,40,50,60,50,30,20,20,40,20,10))
 [1] 20 40 40 50 60 50 30 20 20 40 20 10
> (销售情况 <- data.frame(价格,地区,数量))
    价格 地区 数量
1 10万以下 东部  20
2 10万以下 中部  40
3 10万以下 西部  40
4  10~20万 东部  50
5  10~20万 中部  60
6  10~20万 西部  50
7  20~30万 东部  30
8  20~30万 中部  20
9  20~30万 西部  20
10 30万以上 东部  40
11 30万以上 中部  20
12 30万以上 西部  10
> (count2 <- xtabs(数量 ~ (价格 + 地区),data = 销售情况))
     地区
价格    东部 西部 中部
 10~20万  50  50  60
 10万以下  20  40  40
 20~30万  30  20  20
 30万以上  40  10  20

可以看出这个count2也构成了这个列联表的形式,接下来,使用chisq.test()函数便可进行卡方检验

> chisq.test(count2)
 
  pearson's chi-squared test
 
data: count2
x-squared = 29.991, df = 6, p-value = 3.946e-05

到此这篇关于r语言的xtabs函数实例讲解的文章就介绍到这了,更多相关r语言的xtabs函数内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!

相关标签: R语言 xtabs函数