欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  科技

国家自然奖二等奖:基于不充分信息的机器学习理论与方法研究

程序员文章站 2022-04-22 12:36:11
完成人:周志华(南京大学),陈松灿(南京航空航天大学),张敏灵(南京大学),黎铭(南京大学),谭晓阳 (南京航空航天大学)推荐单位:教育部智能化是信息科学技术发展的主流趋势之一,而机器学习是实现智能化...

完成人:周志华(南京大学),陈松灿(南京航空航天大学),张敏灵(南京大学),黎铭(南京大学),谭晓阳 (南京航空航天大学)

推荐单位:教育部

智能化是信息科学技术发展的主流趋势之一,而机器学习是实现智能化的关键,并在众多领域发挥日益重要的作用。该项目针对机器学习中信息不充分问题开展了研究,对采样、标记、关系、目标类等方面的不充分性,分别通过挖掘数据分布信息、利用未标记数据、利用邻域关系及度量学习、利用非目标类数据来展开研究,建立了多学习器集成的理论和方法、协同训练理论与方法、不平衡样本集的学习理论与方法,用标准测试集测试了这些理论和方法的可行性,并将提出的方法应用医疗诊断、刑事侦查等领域,充分表明该项目构成了完整的体系,有重要发现与创新。推动了基于不充分信息的机器学习问题的研究,有重要的学术意义及实际应用价值。该项目的主要论文发表在国外著名期刊而且影响因子较高,学术思想和观点得到学术界的广泛认可。该项目获发明专利授权6项;研制的系统成功应用于国际电信公司用户分析,两次获PAKDD国际数据挖掘竞赛冠军。获《PatternRecognition》2006-2010年“Most Cited Article”等国际论文奖4项。两次获教育部自然科学一等奖(2005、2011年度)。应邀做国际学术会议特邀报告23次(上旨报告16次)。培养了中国计算机学会优博5篇;7名博士生获微软学者奖;第一完成人入选IEEE

Pellow、IAPR Fellow,担任12种SCI(E)期刊副主编或编委。