欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  php教程

利用k-means聚类算法识别图片主色调

程序员文章站 2022-04-22 12:01:53
...
由于使用php来写图片主色调识别功能太麻烦了,所以我给大家介绍利用利用k-means聚类算法识别图片主色调方法,比php要己100倍哦。

识别图片主色调这个,网上貌似有几种方法,不过,最准确,最优雅的解决方案还是利用聚类算法来做。。。

直接上代码。。。。不过,我测试结果表示,用PHP来做,效率不佳,PHP不适合做这种大规模运算~~~,用nodejs做 效率可以高出100倍左右。。。

代码如下 复制代码

$start = microtime(TRUE);

main();

function main($img = ‘colors_files/T1OX3eXldXXXcqfYM._111424.jpg’)

{

list($width, $height, $mime_code) = getimagesize($img);

$im = null;

$point = array();

switch ($mime_code)

{

# jpg

case 2:

$im =imagecreatefromjpeg($img);

break;

# png

case 3:

default:

exit(‘擦 ,什么图像?解析不了啊’);

}

$new_width = 100;

$new_height = 100;

$pixel = imagecreatetruecolor($new_width, $new_height);

imagecopyresampled($pixel, $im, 0, 0, 0, 0, $new_width, $new_height, $width, $height);

run_time();

$i = $new_width;

while ($i–)

{

# reset高度

$k = $new_height;

while ($k–)

{

$rgb = ImageColorAt($im, $i, $k);

array_push($point, array(‘r’=>($rgb >> 16) & 0xFF, ‘g’=>($rgb >> 8) & 0xFF, ‘b’=>$rgb & 0xFF));

}

}

imagedestroy($im);

imagedestroy($pixel);

run_time();

$color = kmeans($point);

run_time();

foreach ($color as $key => $value)

&nb
sp; {

echo ‘
’ . RGBToHex($value[0]) . ‘’;

}

}

function run_time()

{

global $start;

echo ‘
消耗:’, microtime(TRUE) – $start;

}

function kmeans($point=array(), $k=3, $min_diff=1)

{

global $ii;

$point_len = count($point);

$clusters = array();

$cache = array();

for ($i=0; $i

{

$cache[$i] = $i*$i;

}

# 随机生成k值

$i = $k;

$index = 0;

while ($i–)

{

$index = mt_rand(1,$point_len-100);

array_push($clusters, array($point[$index], array($point[$index])));

}

run_time();

$point_list = array();

$run_num = 0;

while (TRUE)

{

foreach ($point as $value)

{

$smallest_distance = 10000000;

# 求出距离最小的点

# index用于保存point最靠近的k值

$index = 0;

$i = $k;

while ($i–)

{

$distance = 0;

foreach ($value as $key => $p1)

{

&n
bsp; if ($p1 > $clusters[$i][0][$key])

{

$distance += $cache[$p1 - $clusters[$i][0][$key]];

}

else

{

$distance += $cache[$clusters[$i][0][$key] – $p1];

}

}

$ii++;

if ($distance

{

$smallest_distance = $distance;

$index = $i;

}

}

$point_list[$index][] = $value;

}

$diff = 0;

# 1个1个迭代k值

$i = $k;

while ($i–)

{

$old = $clusters[$i];

# 移到到队列中心

$center = calculateCenter($point_list[$i], 3);

# 形成新的k值集合队列

$new_cluster = array($center, $point_list[$i]);

$clusters[$i] = $new_cluster;

# 计算新的k值与队列所在点的位置

$diff = euclidean($old[0], $center);

}

# 判断是否已足够聚合

if ($diff

{

break;
>

}

}

echo ‘—>’.$ii;

return $clusters;

}

# 计算2点距离

$ii = 0;

function euclidean($p1, $p2)

{

$s = 0;

foreach ($p1 as $key => $value)

{

$temp = ($value – $p2[$key]);

$s += $temp*$temp;

}

return sqrt($s);

}

# 移动k值到所有点的中心

function calculateCenter($point_list, $attr_num) {

$vals = array();

$point_num = 0;

$keys = array_keys($point_list[0]);

foreach($keys as $value)

{

$vals[$value] = 0;

}

foreach ($point_list as $arr)

{

$point_num++;

foreach ($arr as $key => $value)

{

$vals[$key] += $value;

}

}

foreach ($keys as $index)

{

$vals[$index] = $vals[$index] / $point_num;

}

return $vals;

}

function RGBToHex($r, $g=”, $b=”)

{

if (is_array($r))

{

$b = $r['b'];

$g = $r['g'];


$r = $r['r'];

}

$hex = “#”;

$hex.= str_pad(dechex($r), 2, ’0′, STR_PAD_LEFT);

$hex.= str_pad(dechex($g), 2, ’0′, STR_PAD_LEFT);

$hex.= str_pad(dechex($b), 2, ’0′, STR_PAD_LEFT);

return $hex;

}

?>