欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

[翻译]——MySQL 8.0 Histograms

程序员文章站 2022-04-21 18:18:10
前言: 本文是对这篇博客MySQL 8.0 Histograms的翻译,翻译如有不当的地方,敬请谅解,请尊重原创和翻译劳动成果,转载的时候请注明出处。谢谢! 英文原文地址:https://lefred.be/content/mysql-8-0-histograms/ 翻译原文地址:https://w... ......

前言: 本文是对这篇博客mysql 8.0 histograms的翻译,翻译如有不当的地方,敬请谅解,请尊重原创和翻译劳动成果,转载的时候请注明出处。谢谢!

 

英文原文地址:https://lefred.be/content/mysql-8-0-histograms/

 

翻译原文地址:

 

 

在mysql 8.0之前,mysql缺失了其它关系数据库中一个众所周知的功能:优化器的直方图

 

优化器团队(optimizer team)在越来越多的mysql dba的呼声中实现了这个功能。

 

 

直方图定义

 

但什么是直方图呢?我们来看*的定义吧,直方图是数值数据分布的准确表示。 对于rdbms来说,直方图是特定列内数据分布的近似值。因此在mysql中,直方图能够帮助优化器找到最有效的执行计划。

 

直方图例子

 

为了说明直方图是如何影响优化器工作的,我会用dbt3生成的数据来演示。

 

我们准备了一个简单查询:

 

select * from orders  
  join customer on o_custkey = c_custkey 
where o_orderdate < '1993-01-01' 
  and c_mktsegment = "automobile"\g

 

让我们看一下传统的执行计划的explain输出,以及可视化方式(visual one):

 

mysql> explain select * from orders  
       join customer on o_custkey = c_custkey 
       where o_orderdate < '1993-01-01' and c_mktsegment = "automobile"\g
*************************** 1. row ***************************
           id: 1
  select_type: simple
        table: customer
   partitions: null
         type: all
possible_keys: primary
          key: null
      key_len: null
          ref: null
         rows: 149050
     filtered: 10.00
        extra: using where
*************************** 2. row ***************************
           id: 1
  select_type: simple
        table: orders
   partitions: null
         type: ref
possible_keys: i_o_custkey,i_o_orderdate
          key: i_o_custkey
      key_len: 5
          ref: dbt3.customer.c_custkey
         rows: 14
     filtered: 30.62
        extra: using where
2 rows in set, 1 warning (0.28 sec)

 

我们看到mysql首先对customer表做了一个全表扫描,并且它的选择估计记录(过滤)是10%;

 

 

 

接下来让我们运行这个查询(我使用了count(*)),然后我们来看看有多少行记录

 

mysql> select count(*) from orders  
       join customer on o_custkey = c_custkey 
       where o_orderdate < '1993-01-01' and c_mktsegment = "automobile"\g
*************************** 1. row ***************************
count(*): 45127
1 row in set (49.98 sec)

 

 

创建直方图

 

现在,我将在表customer上的字段c_mktsegment上创建一个直方图

 

mysql> analyze table customer update histogram on c_mktsegment with 1024 buckets;
+---------------+-----------+----------+---------------------------------------------------------+
| table         | op        | msg_type | msg_text                                                |
+---------------+-----------+----------+---------------------------------------------------------+
| dbt3.customer | histogram | status   | histogram statistics created for column 'c_mktsegment'. |
+---------------+-----------+----------+---------------------------------------------------------+

 

接下来,我们来验证查询的执行计划:

 

mysql> explain select * from orders  
               join customer on o_custkey = c_custkey 
               where o_orderdate < '1993-01-01' and c_mktsegment = "automobile"\g
*************************** 1. row ***************************
           id: 1
  select_type: simple
        table: orders
   partitions: null
         type: all
possible_keys: i_o_custkey,i_o_orderdate
          key: null
      key_len: null
          ref: null
         rows: 1494230
     filtered: 30.62
        extra: using where
*************************** 2. row ***************************
           id: 1
  select_type: simple
        table: customer
   partitions: null
         type: eq_ref
possible_keys: primary
          key: primary
      key_len: 4
          ref: dbt3.orders.o_custkey
         rows: 1
     filtered: 19.84
        extra: using where
2 rows in set, 1 warning (1.06 sec)

 

 

现在,使用直方图后,我们可以看到customer表的吸引力降低了,因为order表按条件过滤的行的百分比(30.62)几乎是customer表按条件过滤行的百分比的两倍(19.84%),这将导致低order表进行查找。

 

注意:这段感觉没有翻译恰当,英文原文如下,如果感觉翻译比较生硬,参考原文

 

now with the histogram we can see that it becomes less attractive to start with customer table since almost twice as many rows (19.84%) will cause look-ups into the order table.

 

 

 

优化器选择对order表进行全表扫描(full sacn),此时执行计划的代价看起来似乎还高一些,,让我们看一下sql的执行时间:

 

 

mysql> select count(*) from orders  
       join customer on o_custkey = c_custkey 
       where o_orderdate < '1993-01-01' and c_mktsegment = "automobile"\g
*************************** 1. row ***************************
count(*): 45127
1 row in set (6.35 sec)

 

sql语句的执行时间更短,明显比之前要快了

 

 

 

查看数据的分布

 

 

直方图数据存贮在information_schema.column_statistics表中,这个表的定义如下

 

 

+-------------+-------------+------+-----+---------+-------+
| field       | type        | null | key | default | extra |
+-------------+-------------+------+-----+---------+-------+
| schema_name | varchar(64) | no   |     | null    |       |
| table_name  | varchar(64) | no   |     | null    |       |
| column_name | varchar(64) | no   |     | null    |       |
| histogram   | json        | no   |     | null    |       |
+-------------+-------------+------+-----+---------+-------+

 

 

它的一条记录类似下面这样:

 

select schema_name, table_name, column_name, json_pretty(histogram) 
from information_schema.column_statistics 
where column_name = 'c_mktsegment'\g
*************************** 1. row ***************************
           schema_name: dbt3
            table_name: customer
           column_name: c_mktsegment
json_pretty(histogram): {
  "buckets": [
    [
      "base64:type254:qvvut01pqklmrq==",
      0.19837010534684954
    ],
    [
      "base64:type254:qlvjterjtkc=",
      0.3983104750546611
    ],
    [
      "base64:type254:rlvstkluvvjf",
      0.5978433710991851
    ],
    [
      "base64:type254:se9vu0vit0xe",
      0.799801232359372
    ],
    [
      "base64:type254:tufdselorvjz",
      1.0
    ]
  ],
  "data-type": "string",
  "null-values": 0.0,
  "collation-id": 255,
  "last-updated": "2018-03-02 20:21:48.271523",
  "sampling-rate": 0.6709158000670916,
  "histogram-type": "singleton",
  "number-of-buckets-specified": 1024
}

 

而且可以查看分布

 

select from_base64(substring_index(v, ':', -1)) value, concat(round(c*100,1),'%') cumulfreq, 
       concat(round((c - lag(c, 1, 0) over()) * 100,1), '%') freq  
from information_schema.column_statistics, json_table(histogram->'$.buckets', 
     '$[*]' columns(v varchar(60) path '$[0]', c double path '$[1]')) hist  
where schema_name  = 'dbt3' and table_name = 'customer' and column_name = 'c_mktsegment';
+------------+-----------+-------+
| value      | cumulfreq | freq  |
+------------+-----------+-------+
| automobile | 19.8%     | 19.8% |
| building   | 39.9%     | 20.1% |
| furniture  | 59.9%     | 19.9% |
| household  | 79.9%     | 20.1% |
| machinery  | 100.0%    | 20.1% |
+------------+-----------+-------+

 

你也可以用下面语法删除直方图信息。

 

 

mysql> analyze table customer drop histogram on c_mktsegment;
+---------------+-----------+----------+---------------------------------------------------------+
| table         | op        | msg_type | msg_text                                                |
+---------------+-----------+----------+---------------------------------------------------------+
| dbt3.customer | histogram | status   | histogram statistics removed for column 'c_mktsegment'. |
+---------------+-----------+----------+---------------------------------------------------------+
1 row in set (0.00 sec)

 

 

buckets

 

你会注意到,当我们创建一个直方图时,我们需要指定buckets的数量,事实上,数据被分成包含特定值以及他们基数(cardinality)的一组buckets,如果在上一个例子中检查直方图的类型,你会发现它是等宽直方图(singleton)

 

 

"histogram-type": "singleton",

 

 

这种类型的直方图最好的,因为基数是针对单个特定值。 如果这次我仅使用2个存储桶(buckets)来重新创建直方图(请记住,在c_mktsegment列中有4个不同的值):

 

 

mysql> analyze table customer update histogram on c_mktsegment with 2 buckets;
+---------------+-----------+----------+---------------------------------------------------------+
| table         | op        | msg_type | msg_text                                                |
+---------------+-----------+----------+---------------------------------------------------------+
| dbt3.customer | histogram | status   | histogram statistics created for column 'c_mktsegment'. |
+---------------+-----------+----------+---------------------------------------------------------+

 

如果我检查直方图的类型:

 

 

mysql> select schema_name, table_name, column_name, 
              json_pretty(histogram) 
       from information_schema.column_statistics 
      where column_name = 'c_mktsegment'\g
*************************** 1. row ***************************
           schema_name: dbt3
            table_name: customer
           column_name: c_mktsegment
json_pretty(histogram): {
  "buckets": [
    [
      "base64:type254:qvvut01pqklmrq==",
      "base64:type254:rlvstkluvvjf",
      0.5996992690844636,
      3
    ],
    [
      "base64:type254:se9vu0vit0xe",
      "base64:type254:tufdselorvjz",
      1.0,
      2
    ]
  ],
  "data-type": "string",
  "null-values": 0.0,
  "collation-id": 255,
  "last-updated": "2018-03-02 20:42:26.165898",
  "sampling-rate": 0.6709158000670916,
  "histogram-type": "equi-height",
  "number-of-buckets-specified": 2
}

 

现在的直方图类型是等高直方图,这意味着将连续范围的值分组到存储桶中,以使落入每个存储桶的数据项的数量相同。

 

 

结论:

 

直方图对那些不是索引中第一列的列非常有用,这些列用于join、in子查询(in-subqueries)或order by…limit的查询的where条件下使用。  

 

另外, 可以考虑尝试使用足够的存储通来获取等宽直方图。