欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  后端开发

python检验Jarque-Bera是否符合正态分布

程序员文章站 2022-04-21 17:13:51
...


本篇文章给大家分享的内容是python检验Jarque-Bera是否符合正态分布,有着一定的参考价值,有需要的朋友可以参考一下

正态分布是一种总体分布的正态性检验。当序列服从正态分布时,JB统计量:

python检验Jarque-Bera是否符合正态分布

渐进服从分布。其中n为样本规模,S,K分别为随机变量的偏度和峰度。计算公式如下:


python检验Jarque-Bera是否符合正态分布


python的sicipy.stats中偏度和峰度的调用的函数为stats.skew(y)stats.kurtosis(y),其中峰度的公式为

python检验Jarque-Bera是否符合正态分布

在excel中,偏度和峰度的计算公式如下:

python检验Jarque-Bera是否符合正态分布

下面自己实现一遍python的scipy库中计算偏度和斜的公式及建立正态分布检验。

代码

import numpy as npimport scipy.stats as statsdef self_JBtest(y):
    # 样本规模n
    n = y.size
    y_ = y - y.mean()    """
    M2:二阶中心钜
    skew 偏度 = 三阶中心矩 与 M2^1.5的比
    krut 峰值 = 四阶中心钜 与 M2^2 的比
    """
    M2 = np.mean(y_**2)
    skew =  np.mean(y_**3)/M2**1.5
    krut = np.mean(y_**4)/M2**2

    """
    计算JB统计量,以及建立假设检验
    """
    JB = n*(skew**2/6 + (krut-3 )**2/24)
    pvalue = 1 - stats.chi2.cdf(JB,df=2)
    print("偏度:",stats.skew(y),skew)
    print("峰值:",stats.kurtosis(y)+3,krut)
    print("JB检验:",stats.jarque_bera(y))    return np.array([JB,pvalue])

y1 = stats.norm.rvs(size=10)

y2 = stats.t.rvs(size=1000,df=4)

print(self_JBtest(y1))

print(self_JBtest(y2))

结果

=============== RESTART: C:\Users\tinysoft\Desktop\JB正态性检验.py =============== 

  偏度: 0.5383125387398069 0.53831253874 

  峰值: 2.9948926317585918 2.99489263176 

  JB检验: (0.48297818444514068, 0.78545737133644544) 

  [ 0.48297818  0.78545737] 

  偏度: -1.0488825341925703 -1.04888253419 

  峰值: 13.40804986639119 13.4080498664 

  JB检验: (4697.0050126426095, 0.0) 

  [ 4697.00501264     0.        ]

以上就是python检验Jarque-Bera是否符合正态分布的详细内容,更多请关注其它相关文章!