欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python实现滑动平均(Moving Average)的代码教程

程序员文章站 2022-01-07 09:51:30
Python实现滑动平均(Moving Average)的代码教程: #!/usr/bin/env python # -*- coding: utf-8 -*- im...

Python实现滑动平均(Moving Average)的代码教程:

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import numpy as np

# 等同于MATLAB中的smooth函数,但是平滑窗口必须为奇数。

# yy = smooth(y) smooths the data in the column vector y ..
# The first few elements of yy are given by
# yy(1) = y(1)
# yy(2) = (y(1) + y(2) + y(3))/3
# yy(3) = (y(1) + y(2) + y(3) + y(4) + y(5))/5
# yy(4) = (y(2) + y(3) + y(4) + y(5) + y(6))/5
# ...

def smooth(a,WSZ):
    # a:原始数据,NumPy 1-D array containing the data to be smoothed
    # 必须是1-D的,如果不是,请使用 np.ravel()或者np.squeeze()转化 
    # WSZ: smoothing window size needs, which must be odd number,
    # as in the original MATLAB implementation
    out0 = np.convolve(a,np.ones(WSZ,dtype=int),'valid')/WSZ
    r = np.arange(1,WSZ-1,2)
    start = np.cumsum(a[:WSZ-1])[::2]/r
    stop = (np.cumsum(a[:-WSZ:-1])[::2]/r)[::-1]
    return np.concatenate((  start , out0, stop  ))

# another one,边缘处理的不好

"""
def movingaverage(data, window_size):
    window = np.ones(int(window_size))/float(window_size)
    return np.convolve(data, window, 'same')
"""

# another one,速度更快
# 输出结果 不与原始数据等长,假设原数据为m,平滑步长为t,则输出数据为m-t+1

"""

def movingaverage(data, window_size):
    cumsum_vec = np.cumsum(np.insert(data, 0, 0)) 
    ma_vec = (cumsum_vec[window_size:] - cumsum_vec[:-window_size]) / window_size
    return ma_vec

"""