PostgreSQL 11 新特性之哈希分区
程序员文章站
2022-04-19 14:09:41
本文介绍 PostgreSQL 11 新增的分区类型:哈希分区(hash partitioning)。...
文章目录
PostgreSQL 10 引入了声明式分区(declarative partitioning)特性,但是实现的功能有限。PostgreSQL 11 为此带来了许多关于分区的增强功能。首先就是增加了 HASH 分区。哈希分区基于分区键的哈希值计算数据所在的分区。
CREATE TABLE htable (c1 bigint, c2 VARCHAR(10)) PARTITION BY HASH(c1);
为哈希分区表创建分区时,使用 FOR VALUES WITH 子句指定分区的计算方法,其中的 MODULUS 子句用于指定除数,REMAINDER 子句用于指定哈希值被除后的余数。
CREATE TABLE htable_p0 PARTITION OF htable FOR VALUES WITH (MODULUS 4, REMAINDER 0);
CREATE TABLE htable_p1 PARTITION OF htable FOR VALUES WITH (MODULUS 4, REMAINDER 1);
CREATE TABLE htable_p2 PARTITION OF htable FOR VALUES WITH (MODULUS 4, REMAINDER 2);
CREATE TABLE htable_p3 PARTITION OF htable FOR VALUES WITH (MODULUS 4, REMAINDER 3);
REMAINDER 子句需要指定一个小于 MODULUS 子句的值。如果指定的分区数量少于 MODULES 子句的值,将会导致无法插入某些数据,因为没有用于存储这些值的分区。
\d+ htable
Table "public.htable"
Column | Type | Collation | Nullable | Default | Storage | Stats target | Description
--------+-----------------------+-----------+----------+---------+----------+--------------+-------------
c1 | bigint | | | | plain | |
c2 | character varying(10) | | | | extended | |
Partition key: HASH (c1)
Partitions: htable_p0 FOR VALUES WITH (modulus 4, remainder 0),
htable_p1 FOR VALUES WITH (modulus 4, remainder 1),
htable_p2 FOR VALUES WITH (modulus 4, remainder 2),
htable_p3 FOR VALUES WITH (modulus 4, remainder 3)
为表 htable 生成一些数据,查看数据在各个分区的分布是否均匀:
INSERT INTO htable SELECT val,'val:'||val FROM generate_series(1,100000) val;
INSERT 0 100000
SELECT COUNT(*) FROM htable_p0;
count
-------
25126
(1 row)
SELECT COUNT(*) FROM htable_p1;
count
-------
24978
(1 row)
SELECT COUNT(*) FROM htable_p2;
count
-------
24971
(1 row)
SELECT COUNT(*) FROM htable_p3;
count
-------
24925
(1 row)
每个分区大概包含四分之一(25000)的数据。
对于哈希分区,同样支持分区裁剪(Partition Pruning):
show enable_partition_pruning;
enable_partition_pruning
--------------------------
on
EXPLAIN SELECT * FROM htable where c1 = 200;
QUERY PLAN
------------------------------------------------------------------
Append (cost=0.00..470.57 rows=1 width=17)
-> Seq Scan on htable_p3 (cost=0.00..470.56 rows=1 width=17)
Filter: (c1 = 200)
(3 rows)
官方文档:Table Partitioning
本文地址:https://blog.csdn.net/horses/article/details/85775084
上一篇: Spring Boot 项目瘦身指南,瘦到不可思议!
下一篇: JSON的简要解析