cifar数据集的预处理和训练
程序员文章站
2022-04-18 20:05:41
...
注:以下代码从mooc网<人工智能实践:Tensorflow笔记>课程作业给出参考代码和讨论区同学回复代码学习修改得到,侵权立删.
网址:https://www.icourse163.org/learn/PKU-1002536002?tid=1206591210#/learn/forumdetail?pid=1212984121
forward代码:
#coding:utf-8
import tensorflow as tf
IMAGE_SIZE = 32 #input:32*32
NUM_CHANNELS = 3 #color:3
CONV1_SIZE = 5
CONV1_KERNEL_NUM = 32
CONV2_SIZE = 5
CONV2_KERNEL_NUM = 64
FC_SIZE = 512
OUTPUT_NODE = 10
def get_weight(shape, regularizer):
w = tf.Variable(tf.truncated_normal(shape,stddev=0.1))
if regularizer != None: tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w))
return w
def get_bias(shape):
b = tf.Variable(tf.zeros(shape))
return b
def conv2d(x,w):
return tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
def forward(x, train, regularizer):
conv1_w = get_weight([CONV1_SIZE, CONV1_SIZE, NUM_CHANNELS, CONV1_KERNEL_NUM], regularizer)
conv1_b = get_bias([CONV1_KERNEL_NUM])
conv1 = conv2d(x, conv1_w)
relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_b))
pool1 = max_pool_2x2(relu1)
conv2_w = get_weight([CONV2_SIZE, CONV2_SIZE, CONV1_KERNEL_NUM, CONV2_KERNEL_NUM],regularizer)
conv2_b = get_bias([CONV2_KERNEL_NUM])
conv2 = conv2d(pool1, conv2_w)
relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_b))
pool2 = max_pool_2x2(relu2)
pool_shape = pool2.get_shape().as_list()
nodes = pool_shape[1] * pool_shape[2] * pool_shape[3]
reshaped = tf.reshape(pool2, [pool_shape[0], nodes])
fc1_w = get_weight([nodes, FC_SIZE], regularizer)
fc1_b = get_bias([FC_SIZE])
fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_w) + fc1_b)
if train: fc1 = tf.nn.dropout(fc1, 0.5)
fc2_w = get_weight([FC_SIZE, OUTPUT_NODE], regularizer)
fc2_b = get_bias([OUTPUT_NODE])
y = tf.matmul(fc1, fc2_w) + fc2_b
return y
backward代码:
#coding:utf-8
import tensorflow as tf
import cifar_lenet5_forward
import os
import numpy as np
from read_data import DataLoad
BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.005
LEARNING_RATE_DECAY = 0.99
REGULARIZER = 0.0001
STEPS = 5000
MOVING_AVERAGE_DECAY = 0.99
MODEL_SAVE_PATH="./model/"
MODEL_NAME="cifar_model"
def backward(cifar):
x = tf.placeholder(tf.float32,[
BATCH_SIZE,
cifar_lenet5_forward.IMAGE_SIZE,
cifar_lenet5_forward.IMAGE_SIZE,
cifar_lenet5_forward.NUM_CHANNELS])
y_ = tf.placeholder(tf.float32, [None, cifar_lenet5_forward.OUTPUT_NODE])
y = cifar_lenet5_forward.forward(x,True, REGULARIZER)
global_step = tf.Variable(0, trainable=False)
ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cem = tf.reduce_mean(ce)
loss = cem + tf.add_n(tf.get_collection('losses'))
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
cifar.num_examples / BATCH_SIZE,
LEARNING_RATE_DECAY,
staircase=True)
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
ema_op = ema.apply(tf.trainable_variables())
with tf.control_dependencies([train_step, ema_op]):
train_op = tf.no_op(name='train')
saver = tf.train.Saver()
with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
for i in range(STEPS):
xs, ys = cifar.next_batch(BATCH_SIZE)
reshaped_xs = np.reshape(xs,(
BATCH_SIZE,
cifar_lenet5_forward.IMAGE_SIZE,
cifar_lenet5_forward.IMAGE_SIZE,
cifar_lenet5_forward.NUM_CHANNELS))
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: reshaped_xs, y_: ys})
if i % 100 == 0:
print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)
'''
def main():
cifar = input_data.read_data_sets("./data/", one_hot=True)
backward(cifar)
'''
def main():
#cifar10 = input_data.read_data_sets("./data/", one_hot=True) # 读入 Cifar-10 数据
cifar10_train = DataLoad("./train")
backward(cifar10_train)
if __name__ == '__main__':
main()
test代码:
#coding:utf-8
import time
import tensorflow as tf
import cifar_lenet5_forward
import cifar_lenet5_backward
import numpy as np
from read_data import DataLoad
TEST_INTERVAL_SECS = 5
def test(cifar):
with tf.Graph().as_default() as g:
x = tf.placeholder(tf.float32,[
cifar.num_examples,
cifar_lenet5_forward.IMAGE_SIZE,
cifar_lenet5_forward.IMAGE_SIZE,
cifar_lenet5_forward.NUM_CHANNELS])
y_ = tf.placeholder(tf.float32, [None, cifar_lenet5_forward.OUTPUT_NODE])
y = cifar_lenet5_forward.forward(x,False,None)
ema = tf.train.ExponentialMovingAverage(cifar_lenet5_backward.MOVING_AVERAGE_DECAY)
ema_restore = ema.variables_to_restore()
saver = tf.train.Saver(ema_restore)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
while True:
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(cifar_lenet5_backward.MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
reshaped_x = np.reshape(cifar.xs,(
cifar.num_examples,
cifar_lenet5_forward.IMAGE_SIZE,
cifar_lenet5_forward.IMAGE_SIZE,
cifar_lenet5_forward.NUM_CHANNELS))
accuracy_score = sess.run(accuracy, feed_dict={x:reshaped_x,y_:cifar.ys})
print("After %s training step(s), test accuracy = %g" % (global_step, accuracy_score))
else:
print('No checkpoint file found')
return
time.sleep(TEST_INTERVAL_SECS)
'''
def main():
cifar = input_data.read_data_sets("./data/", one_hot=True)
test(cifar)
'''
def main():
#cifar10 = input_data.read_data_sets("./data/", one_hot=True)
cifar10_test = DataLoad("./test")
test(cifar10_test)
if __name__ == '__main__':
main()
read_data代码:
#coding:utf-8
from PIL import Image
import numpy as np
import os
import random
class DataLoad:
def __init__(self,data_path):
'''
初始化加载 数据目录
:param data_path: 包含图片数据集的目录,内部应该包含不同分类的的图片,每种类型是一个子目录
'''
self.xs = []
self.ys = []
# 还是先写死吧,简单点
lables_d = {
0: "airplane",
1: "automobile",
2: "bird",
3: "cat",
4: "deer",
5: "dog",
6: "frog",
7: "horse",
8: "ship",
9: "truck"
}
a_tmp_list = []
for k,v in lables_d.items():
a_path = data_path + "/" + v
for file in os.listdir(a_path):
x = a_path + "/" + file # pre_pic()
a_tmp_list.append((x, k)) # 这里,暂不读取文件.记录每个文件名对应的label
#print(x,k)
#
random.shuffle(a_tmp_list) # 对列表随机打乱
#
for (file_path, k) in a_tmp_list:
y = np.zeros(10)
y[k] = 1 # 构造 one-hot 的y
fp = open(file_path,'r')
x = Image.open(fp)
x=np.array(x.resize((32,32)))
fp.close()
self.xs.append(x)
self.ys.append(y)
#
self.xs = np.array(self.xs)
self.ys = np.array(self.ys)
self.num_examples = len(self.xs) # 样本数量
self.curr_pointer = 0
def next_batch(self, batch_size):
''' 随机读取一个批次数据. '''
start = random.randint(0,self.num_examples-batch_size-1)
end = start + batch_size
xx = self.xs[start : end]
yy = self.ys[start : end]
#print(xx.shape)
#print(xx)
#xx = xx.reshape([1, -1])
#print(xx.shape)
rtn_samp = (xx,yy)
#
#exit(0)
#print("-----------------------------1,%d" % batch_size)
#print(rtn_samp)
return rtn_samp
推荐阅读
-
C#使用TensorFlow.NET训练自己的数据集的方法
-
对sklearn的使用之数据集的拆分与训练详解(python3.6)
-
基于jupyter notebook的python编程(Win10通过OpenCv-3.4.1进行人脸口罩数据集的模型训练并进行戴口罩识别检测)
-
详解tensorflow训练自己的数据集实现CNN图像分类
-
sql 查询 一张表里面的数据 在另一张表中是否存在 和 比对两个集合中的差集和交集(原创)
-
python 划分数据集为训练集和测试集的方法
-
pytorch 把MNIST数据集转换成图片和txt的方法
-
Tensorflow 训练自己的数据集将数据直接导入到内存
-
求训练集的熵和信息增益
-
人脸口罩数据集的模型训练以及戴口罩识别检测