欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

使用Kalibr进行IMU+相机的标定

程序员文章站 2022-04-18 12:34:54
...

利用kalibr标定IMU和相机:  https://github.com/ethz-asl/kalibr/wiki/Camera-IMU-calibration#2-collect-images

在开始需要明确几点的是:需要先安装kalibr,该工具主要是标定相机和IMU, 在标定的过程中需要用到IMU和相机的内参文件,这里的内参文件可以用ROS 帮忙获得,或者如果已经有这个文件可以直接用。

接下要做的即安装realsense的ros接口主要是为了方便读取topic来录制rosbag, 因为kalibr在标定的时候需要用rosbag中的数据进行标定;

这里的相机采用realsense d435i 因此在安装标定前要确保相关库已经安装

-----IMU内参标定-----

1. 确保realsense的SDK已经安装:

2. 安装realsense的ros warpper

   https://github.com/IntelRealSense/realsense-ros 这是前两步的参考链接,包含安装realsense的SDK和roswarpper

  我之前已经安装过ros kinect在Ubuntu16.04的平台上,因此这里直接从catkin的工作空间开始

3. 标定IMU

   3.1 安装cereshttps://blog.csdn.net/jz1570551401/article/details/78207208

1. 预安装,其中libgoogle-glog-dev 可能需要再单独安装
sudo apt-get install liblapack-dev libsuitesparse-dev libcxsparse3.1.2 libgflags-dev 
libgoogle-glog-dev libgtest-dev   
2. 下载ceres:https://github.com/ceres-solver/ceres-solver
3. 解压文件后进入ceres-master:
    mkdir build
    cd build
    cmake ..  //如果这一步骤报错,可以检查一下是具体那个库没有安装成功,再sudo apt-get 对应的库就好
    make  //大概等几分钟
    sudo make install 
    
    安装完成后/usr/local/include/ceres 和 /usr/local/lib/ 中

     3.2 下载code_utils: https://github.com/gaowenliang/code_utils

            解压至catkin下的src文件,然后在code_utils下面找到sumpixel_test.cpp,修改#include "backward.hpp"为 #include “code_utils/backward.hpp”,然后运行catkin_make

           错误提示:code_utils/backward.hpp:216:30: fatal error: elfutils/libdw.h: No such file or directory
compilation terminated.

     运行: apt-get install libdw-dev 安装对应的库即可,一般安装这个就可以,如果这样还不可以试试:sudo apt-get install elfutils

    3.3 下载imu_utils: https://github.com/gaowenliang/imu_utils

           再次catkin_make

    3.4 接下来就可以就可以标定IMU了:

<launch>
    <node pkg="imu_utils" type="imu_an" name="imu_an" output="screen">
        <param name="imu_topic" type="string" value= "/camera/imu"/>  #imu topic的名字
        <param name="imu_name" type="string" value= "d435i"/>
        <param name="data_save_path" type="string" value= "$(find imu_utils)/data/d435i"/>
        <param name="max_time_min" type="int" value= "30"/> #标定的时长
        <param name="max_cluster" type="int" value= "100"/>
    </node>
</launch>

将该launch文件保存成imu.launch至src和install下的launch中, 然后在两个终端中同时运行

~/catkin_ws_rs$ roslaunch realsense2_camera rs_camera.launch
~/catkin_ws_rs/install/share/realsense2_camera/launch$ roslaunch imu.launch

运行imu.launch文件的终端中会出现

process[imu_an-1]: started with pid [8274]
[ INFO] [1571305008.871258796]: Loaded imu_topic: /camera/imu
[ INFO] [1571305008.872137757]: Loaded imu_name: d435i
[ INFO] [1571305008.872762617]: Loaded data_save_path: /home/shinan/catkin_ws_rs/src/imu_utils/data/d435i
[ INFO] [1571305008.873749085]: Loaded max_time_min: 30
[ INFO] [1571305008.874493932]: Loaded max_cluster: 100
gyr x  num of Cluster 100
gyr y  num of Cluster 100
gyr z  num of Cluster 100
acc x  num of Cluster 100
acc y  num of Cluster 100
acc z  num of Cluster 100
wait for imu data.

接下来等待30分钟即可,标定完成后imu的参数将会被保存在data_save_path的路径中;

也可以录制bag保存imu数据后进行标定;https://blog.csdn.net/fang794735225/article/details/92804030

将IMU的标定结果保存到文件imu.yaml中:

#Accelerometers
accelerometer_noise_density: 2.4753056458491202e-02   #Noise density (continuous-time)
accelerometer_random_walk:   5.1092097834339175e-04   #Bias random walk

#Gyroscopes
gyroscope_noise_density:     4.0642638745600332e-03   #Noise density (continuous-time)
gyroscope_random_walk:       2.6537322064011450e-05   #Bias random walk

rostopic:                    /imu0      #the IMU ROS topic
update_rate:                 200.0      #Hz (for discretization of the values above)

 

相机标定:https://blog.csdn.net/heyijia0327/article/details/43538695

标定realsense的RGB相机,如果使用的是其他相机可以用opencv采集图像后进行单目标定,这里不多写,主要是标定Realsense的彩色相机:

设定好相机的相关参数后(主要是size 和fps):目前设置图像大小为640*480 帧率为30

roslaunch realsense2_camera rs_camera.launch

启动realsense相机后,可以用rostopic list 查看对应的打开的topics

可以用ros自带的标定方法进行相机标定:

~/catkin_ws_rs$ rosrun camera_calibration cameracalibrator.py  --size 8x6 --square 0.035 image:=/camera/color/image_raw

使用Kalibr进行IMU+相机的标定

最开始的CALBRATE按钮为灰色,当采集的图像符合条件够就变成绿色,然后可以点击CALIBRATE进行标定,标定结果显示如下:
 

  ('D = ', [0.20848791559812113, -0.36507062055202405, 0.012079145675854016, -0.006358054188595459, 0.0])
('K = ', [653.7064773464425, 0.0, 314.4404941629716, 0.0, 654.2058371422769, 261.91335661459755, 0.0, 0.0, 1.0])
('R = ', [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0])
('P = ', [677.4393920898438, 0.0, 311.13625111082183, 0.0, 0.0, 676.0581665039062, 266.3551872155367, 0.0, 0.0, 0.0, 1.0, 0.0])

将标定的结果保存到.yaml文件中 如下所示:

cam0:  #640*480
  camera_model: pinhole
  intrinsics: [653.7064773464425, 654.2058371422769,314.4404941629716, 261.91335661459755]
  distortion_model: radtan
  distortion_coeffs: [0.20848791559812113, -0.36507062055202405, 0.012079145675854016, -0.006358054188595459]
  rostopic: /camera/color/image_raw
  resolution: [640, 480]

准备标定板文件aprilgrid.yaml:

使用Kalibr进行IMU+相机的标定

 

 相机+IMU标定: https://github.com/ethz-asl/kalibr/wiki/Camera-IMU-calibration#2-collect-images

1. 启动realsense相机和imu,所以也要先设置好rs_camera.launch文件中的相关参数;

target_type: 'aprilgrid' #gridtype
tagCols: 6               #number of apriltags
tagRows: 6               #number of apriltags
tagSize: 0.021383           #size of apriltag, edge to edge [m]
tagSpacing: 0.2853        #ratio of space between tags to tagSize 0.61cm/2.1383cm = 0.285273348
                         #example: tagSize=2m, spacing=0.5m --> tagSpacing=spacing/tagSize = 0.25[-]

 2. 为相机和IMU录制数据包,

可以先运行 rosrun image_view image_view image:=/camera/color/image_raw 查看图像, 保证在录制数据包的时候标定板不会超出画面

录制的时候尽量保证图像清晰,不要剧烈移动,同时尽可能地**IMU的各个角度,各个方向:

rosbag record /camera/color/image_raw  /camera/imu -O rgb_imu.bag​

 3.  进行标定:参数分别是包名称(不用加.bag),相机参数文件,imu参数文件, 标定板文件

~/Project/kalibr_workspace$ kalibr_calibrate_imu_camera --bag ~/Project/kalibr_workspace/rgb_imu.bag​.bag --cam ~/Project/kalibr_workspace/camchain.yaml --imu ~/Project/kalibr_workspace/imu.yaml --target ~/Project/kalibr_workspace/aprilgrid.yaml 

 出现错误提示:

importing libraries
Traceback (most recent call last):
  File "/home/shinan/Project/kalibr_workspace/devel/bin/kalibr_calibrate_imu_camera", line 15, in <module>
    exec(compile(fh.read(), python_script, 'exec'), context)
  File "/home/shinan/Project/kalibr_workspace/src/kalibr-master/aslam_offline_calibration/kalibr/python/kalibr_calibrate_imu_camera", line 5, in <module>
    from kalibr_imu_camera_calibration import *
  File "/home/shinan/Project/kalibr_workspace/src/kalibr-master/aslam_offline_calibration/kalibr/python/kalibr_imu_camera_calibration/__init__.py", line 4, in <module>
    import IccSensors as sens
  File "/home/shinan/Project/kalibr_workspace/src/kalibr-master/aslam_offline_calibration/kalibr/python/kalibr_imu_camera_calibration/IccSensors.py", line 16, in <module>
    import scipy.optimize
ImportError: No module named scipy.optimize

 安装python相关库:

sudo apt-get install python-scipy

标定结果如下:

After Optimization (Results)
==================
Normalized Residuals
----------------------------
Reprojection error (cam0):     mean 0.552748299525, median 0.473100512902, std: 0.3640429471
Gyroscope error (imu0):        mean 0.215478847361, median 0.161409013393, std: 0.19024901177
Accelerometer error (imu0):    mean 0.165613674102, median 0.132037510374, std: 0.129116309678

Residuals
----------------------------
Reprojection error (cam0) [px]:     mean 0.552748299525, median 0.473100512902, std: 0.3640429471
Gyroscope error (imu0) [rad/s]:     mean 0.0123851576362, median 0.00927736573336, std: 0.0109350130176
Accelerometer error (imu0) [m/s^2]: mean 0.0579749018736, median 0.0462211936851, std: 0.04519859501

Transformation T_cam0_imu0 (imu0 to cam0, T_ci): 
[[ 0.9999488  -0.00279248  0.00972605  0.03555196]
 [ 0.00297818  0.99981255 -0.01913078 -0.00461578]
 [-0.0096708   0.01915877  0.99976968  0.00838297]
 [ 0.          0.          0.          1.        ]]

cam0 to imu0 time: [s] (t_imu = t_cam + shift)
-0.0280180128084

IMU0:
----------------------------
  Model: calibrated
  Update rate: 200.0
  Accelerometer:
    Noise density: 0.0247530564585 
    Noise density (discrete): 0.350061081538 
    Random walk: 0.000510920978343
  Gyroscope:
    Noise density: 0.00406426387456
    Noise density (discrete): 0.0574773709247 
    Random walk: 2.6537322064e-05
  T_i_b
    [[ 1.  0.  0.  0.]
     [ 0.  1.  0.  0.]
     [ 0.  0.  1.  0.]
     [ 0.  0.  0.  1.]]
  time offset with respect to IMU0: 0.0 [s]

  Saving camera chain calibration to file: camchain-imucam-homeshinanProjectkalibr_workspacecam_imu640_480_retrgb_imu​.bag.yaml

  Saving imu calibration to file: imu-homeshinanProjectkalibr_workspacecam_imu640_480_retrgb_imu​.bag.yaml
  Detailed results written to file: results-imucam-homeshinanProjectkalibr_workspacecam_imu640_480_retrgb_imu​.bag.txt
Generating result report...

Timeshift表示的就是IMU相对于camera的延时;

 参考博客:https://blog.csdn.net/mxdsdo09/article/details/83514310