【工具脚本】对目标检测VOC格式的数据进行扩充
程序员文章站
2022-04-17 21:22:15
...
功能:扩充目标检测VOC格式的数据,可选扩充方式有——>平移、旋转、裁剪、改变亮度、加噪声、镜像。
备注:
1)扩充数据时,能够自动调整xml文件中标注框的坐标值。
2)根据具体需求,选择扩充的方式。
3)扩充完,可以使用另外一个脚本,检查下标注框是否越界。
废话说完了,脚本代码如下:
# coding: utf-8
import numpy as np
import random
import cv2
import glob
import os
import math
import xml.etree.cElementTree as ET
import xml.dom.minidom
from xml.dom.minidom import Document
from PIL import Image, ImageDraw
# 随机平移
def random_translate(img, bboxes, p=0.5):
# 随机平移
if random.random() < p:
h_img, w_img, _ = img.shape
# 得到可以包含所有bbox的最大bbox
max_bbox = np.concatenate([np.min(bboxes[:, 0:2], axis=0), np.max(bboxes[:, 2:4], axis=0)], axis=-1)
max_l_trans = max_bbox[0]
max_u_trans = max_bbox[1]
max_r_trans = w_img - max_bbox[2]
max_d_trans = h_img - max_bbox[3]
tx = random.uniform(-(max_l_trans - 1), (max_r_trans - 1))
ty = random.uniform(-(max_u_trans - 1), (max_d_trans - 1))
M = np.array([[1, 0, tx], [0, 1, ty]])
img = cv2.warpAffine(img, M, (w_img, h_img))
bboxes[:, [0, 2]] = bboxes[:, [0, 2]] + tx
bboxes[:, [1, 3]] = bboxes[:, [1, 3]] + ty
return img, bboxes
# 随机裁剪
def random_crop(img, bboxes, p=0.5):
# 随机裁剪
if random.random() < p:
h_img, w_img, _ = img.shape
# 得到可以包含所有bbox的最大bbox
max_bbox = np.concatenate([np.min(bboxes[:, 0:2], axis=0), np.max(bboxes[:, 2:4], axis=0)], axis=-1)
max_l_trans = max_bbox[0]
max_u_trans = max_bbox[1]
max_r_trans = w_img - max_bbox[2]
max_d_trans = h_img - max_bbox[3]
crop_xmin = max(0, int(max_bbox[0] - random.uniform(0, max_l_trans)))
crop_ymin = max(0, int(max_bbox[1] - random.uniform(0, max_u_trans)))
crop_xmax = max(w_img, int(max_bbox[2] + random.uniform(0, max_r_trans)))
crop_ymax = max(h_img, int(max_bbox[3] + random.uniform(0, max_d_trans)))
img = img[crop_ymin : crop_ymax, crop_xmin : crop_xmax]
bboxes[:, [0, 2]] = bboxes[:, [0, 2]] - crop_xmin
bboxes[:, [1, 3]] = bboxes[:, [1, 3]] - crop_ymin
return img, bboxes
# 随机水平反转
def random_horizontal_flip(img, bboxes, p=0.5):
if random.random() < p:
_, w_img, _ = img.shape
img = img[:, ::-1, :]
# bboxes[:, [0, 2]] = w_img - bboxes[:, [2, 0]]
# 修改Xmin,Xmax的值
for bbox in bboxes:
bbox[0] = w_img - int(bbox[0])
bbox[2] = w_img - int(bbox[2])
return img, bboxes
# 随机垂直反转
def random_vertical_flip(img, bboxes, p=0.5):
if random.random() < p:
h_img, _, _ = img.shape
img = img[::-1, :, :]
# bboxes[:, [1, 3]] = h_img - bboxes[:, [3, 1]]
# 修改ymin,ymax的值
for bbox in bboxes:
bbox[1] = h_img - int(bbox[1])
bbox[3] = h_img - int(bbox[3])
return img, bboxes
#随机顺时针旋转90
def random_rot90_1(img, bboxes=None, p=0.5):
'''
:param img: nparray img
:param bboxes: np.array([[88, 176, 250, 312, 1222], [454, 115, 500, 291, 1222]]), 里面为x1, y1, x2, y2, 标签
:param p: 随机比例
:return:
'''
# 顺时针旋转90度
if random.random() < p:
h, w, _ = img.shape
trans_img = cv2.transpose(img)
new_img = cv2.flip(trans_img, 1)
if bboxes is None:
return new_img
else:
# bounding box 的变换: 一个图像的宽高是W,H, 如果顺时90度转换,那么原来的原点(0, 0)到了 (H, 0) 这个最右边的顶点了,
# 设图像中任何一个转换前的点(x1, y1), 转换后,x1, y1是表示到 (H, 0)这个点的距离,所以我们只要转换回到(0, 0) 这个点的距离即可!
# 所以+90度转换后的点为 (H-y1, x1), -90度转换后的点为(y1, W-x1)
bboxes[:, [0, 1, 2, 3]] = bboxes[:, [1, 0, 3, 2]]
bboxes[:, [0, 2]] = h - bboxes[:, [0, 2]]
return new_img, bboxes
else:
if bboxes is None:
return img
else:
return img, bboxes
# 随机逆时针旋转
def random_rot90_2(img, bboxes=None, p=0.5):
'''
:param img: nparray img
:param bboxes: np.array([[88, 176, 250, 312, 1222], [454, 115, 500, 291, 1222]]), 里面为x1, y1, x2, y2, 标签
:param p: 随机比例
:return:
'''
# 逆时针旋转90度
if random.random() < p:
h, w, _ = img.shape
trans_img = cv2.transpose(img)
new_img = cv2.flip(trans_img, 0)
if bboxes is None:
return new_img
else:
# bounding box 的变换: 一个图像的宽高是W,H, 如果顺时90度转换,那么原来的原点(0, 0)到了 (H, 0) 这个最右边的顶点了,
# 设图像中任何一个转换前的点(x1, y1), 转换后,x1, y1是表示到 (H, 0)这个点的距离,所以我们只要转换回到(0, 0) 这个点的距离即可!
# 所以+90度转换后的点为 (H-y1, x1), -90度转换后的点为(y1, W-x1)
bboxes[:, [0, 1, 2, 3]] = bboxes[:, [1, 0, 3, 2]]
bboxes[:, [1, 3]] = w - bboxes[:, [1, 3]]
return new_img, bboxes
else:
if bboxes is None:
return img
else:
return img, bboxes
# 随机对比度和亮度 (概率:0.5)
def random_bright(img, bboxes, p=0.5, lower=0.8, upper=1.2):
if random.random() < p:
mean = np.mean(img)
img = img - mean
img = img * random.uniform(lower, upper) + mean * random.uniform(lower, upper) # 亮度
img = img / 255.
return img, bboxes
# 随机变换通道
def random_swap(im, bboxes, p=0.5):
perms = ((0, 1, 2), (0, 2, 1),
(1, 0, 2), (1, 2, 0),
(2, 0, 1), (2, 1, 0))
if random.random() < p:
swap = perms[random.randrange(0, len(perms))]
print swap
im[:, :, (0, 1, 2)] = im[:, :, swap]
return im, bboxes
# 随机变换饱和度
def random_saturation(im, bboxes, p=0.5, lower=0.5, upper=1.5):
if random.random() < p:
im[:, :, 1] = im[:, :, 1] * random.uniform(lower, upper)
return im, bboxes
# 随机变换色度(HSV空间下(-180, 180))
def random_hue(im, bboxes, p=0.5, delta=18.0):
if random.random() < p:
im[:, :, 0] = im[:, :, 0] + random.uniform(-delta, delta)
im[:, :, 0][im[:, :, 0] > 360.0] = im[:, :, 0][im[:, :, 0] > 360.0] - 360.0
im[:, :, 0][im[:, :, 0] < 0.0] = im[:, :, 0][im[:, :, 0] < 0.0] + 360.0
return im, bboxes
# 随机旋转0-90角度
def random_rotate_image_func(image):
#旋转角度范围
angle = np.random.uniform(low=0, high=90)
return misc.imrotate(image, angle, 'bicubic')
def random_rot(image, bboxes, angle, center=None, scale=1.0,):
(h, w) = image.shape[:2]
# 若未指定旋转中心,则将图像中心设为旋转中心
if center is None:
center = (w / 2, h / 2)
# 执行旋转
M = cv2.getRotationMatrix2D(center, angle, scale)
if bboxes is None:
for i in range(image.shape[2]):
image[:, :, i] = cv2.warpAffine(image[:, :, i], M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_CONSTANT)
return image
else:
box_x, box_y, box_label, box_tmp = [], [], [], []
for box in bboxes:
box_x.append(int(box[0]))
box_x.append(int(box[2]))
box_y.append(int(box[1]))
box_y.append(int(box[3]))
box_label.append(box[4])
box_tmp.append(box_x)
box_tmp.append(box_y)
bboxes = np.array(box_tmp)
####make it as a 3x3 RT matrix
full_M = np.row_stack((M, np.asarray([0,0,1])))
img_rotated = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_CONSTANT)
###make the bboxes as 3xN matrix
full_bboxes = np.row_stack((bboxes, np.ones(shape=(1, bboxes.shape[1]))))
bboxes_rotated = np.dot(full_M, full_bboxes)
bboxes_rotated = bboxes_rotated[0:2, :]
bboxes_rotated = bboxes_rotated.astype(np.int32)
result = []
for i in range(len(box_label)):
x1, y1, x2, y2 = bboxes_rotated[0][2*i], bboxes_rotated[1][2*i], bboxes_rotated[0][2*i+1], bboxes_rotated[1][2*i+1]
x1, y1, x2, y2 = max(0, x1), max(0, y1), max(0, x2), max(0, y2)
x1, x2 = min(w, x1), min(w, x2)
y1, y2 = min(h, y1), min(h, y2)
one_box = [x1, y1, x2, y2, box_label[i]]
result.append(one_box)
return img_rotated, result
# 平移(需要改变bbox):平移后的图片需要包含所有的框,否则会对图像的原始标注造成破坏。
def _shift_pic_bboxes(img, bboxes):
'''
平移后需要包含所有的框
参考资料:https://blog.csdn.net/sty945/article/details/79387054
输入:
img:图像array
bboxes:该图像包含的所有boundingboxes,一个list,每个元素为[x_min,y_min,x_max,y_max]
要确保是数值
输出:
shift_img:平移后的图像array
shift_bboxes:平移后的boundingbox的坐标,list
'''
#------------------ 平移图像 ------------------
w = img.shape[1]
h = img.shape[0]
x_min = w
x_max = 0
y_min = h
y_max = 0
for bbox in bboxes:
x_min = min(x_min, bbox[0])
y_min = min(y_min, bbox[1])
x_max = max(x_max, bbox[2])
y_max = max(x_max, bbox[3])
name = bbox[4]
# 包含所有目标框的最小框到各个边的距离,即每个方向的最大移动距离
d_to_left = x_min
d_to_right = w - x_max
d_to_top = y_min
d_to_bottom = h - y_max
#在矩阵第一行中表示的是[1,0,x],其中x表示图像将向左或向右移动的距离,如果x是正值,则表示向右移动,如果是负值的话,则表示向左移动。
#在矩阵第二行表示的是[0,1,y],其中y表示图像将向上或向下移动的距离,如果y是正值的话,则向下移动,如果是负值的话,则向上移动。
x = int(random.uniform(-(d_to_left/3), d_to_right/3))
y = int(random.uniform(-(d_to_top/3), d_to_bottom/3))
M = np.float32([[1, 0, x], [0, 1, y]])
# 仿射变换
shift_img = cv2.warpAffine(img, M, (img.shape[1], img.shape[0])) #第一个参数表示我们希望进行变换的图片,第二个参数是我们的平移矩阵,第三个希望展示的结果图片的大小
#------------------ 平移boundingbox ------------------
shift_bboxes = list()
for bbox in bboxes:
shift_bboxes.append([bbox[0]+x, bbox[1]+y, bbox[2]+x, bbox[3]+y, bbox[4]])
return shift_img, shift_bboxes
# 裁剪(需要改变bbox):裁剪后的图片需要包含所有的框,否则会对图像的原始标注造成破坏。
def _crop_img_bboxes(img,bboxes):
'''
裁剪后图片要包含所有的框
输入:
img:图像array
bboxes:该图像包含的所有boundingboxes,一个list,每个元素为[x_min,y_min,x_max,y_max]
要确保是数值
输出:
crop_img:裁剪后的图像array
crop_bboxes:裁剪后的boundingbox的坐标,list
'''
#------------------ 裁剪图像 ------------------
w = img.shape[1]
h = img.shape[0]
x_min = w
x_max = 0
y_min = h
y_max = 0
for bbox in bboxes:
x_min = min(x_min, bbox[0])
y_min = min(y_min, bbox[1])
x_max = max(x_max, bbox[2])
y_max = max(y_max, bbox[3])
name = bbox[4]
# 包含所有目标框的最小框到各个边的距离
d_to_left = x_min
d_to_right = (w - x_max)
d_to_top = y_min
d_to_bottom = (h - y_max)
# 随机扩展这个最小范围
crop_x_min = int(x_min - random.uniform(0.7*d_to_left, d_to_left)) #修改随机值范围,避免裁的太狠了,这个值可以设(0,1),越大裁剪幅度越小
crop_y_min = int(y_min - random.uniform(0.7*d_to_top, d_to_top)) #(0, d_to_top)
crop_x_max = int(x_max + random.uniform(0.7*d_to_right, d_to_right))
crop_y_max = int(y_max + random.uniform(0.7*d_to_bottom, d_to_bottom))
# 确保不出界
crop_x_min = max(0, crop_x_min)
crop_y_min = max(0, crop_y_min)
crop_x_max = min(w, crop_x_max)
crop_y_max = min(h, crop_y_max)
crop_img = img[crop_y_min:crop_y_max, crop_x_min:crop_x_max]
#------------------ 裁剪bounding boxes ------------------
crop_bboxes = list()
for bbox in bboxes:
crop_bboxes.append([bbox[0]-crop_x_min, bbox[1]-crop_y_min,
bbox[2]-crop_x_min, bbox[3]-crop_y_min,bbox[4]])
return crop_img, crop_bboxes
# 改变亮度:改变亮度比较简单,不需要处理bounding boxes
def _changeLight(img,bboxes):
'''
adjust_gamma(image, gamma=1, gain=1)函数:
gamma>1时,输出图像变暗,小于1时,输出图像变亮
输入:
img:图像array
输出:
img:改变亮度后的图像array,无需修改xml
'''
contrast = 1 #对比度
# brightness = random.randint(40,80) #调高亮度,值越大,越亮
# brightness = random.randint(-60,-20) #调低亮度,值越低,越暗
brightness = random.randint(-60,80)
adjust_img = cv2.addWeighted(img,contrast,img,0,brightness) #cv2.addWeighted(对象,对比度,对象,对比度)
return adjust_img, bboxes
# 加入噪声:加入噪声也比较简单,不需要处理bounding boxes
def _addNoise(img, bboxes,):
'''
输入:
img:图像array
输出:
img:加入噪声后的图像array,由于输出的像素是在[0,1]之间,所以得乘以255
'''
# noise_img = random_noise(img, mode='gaussian', clip=True) * 255
noise_sigma = random.randint(5,10) #生成随机数,这个值越大,噪声越厉害
temp_image = np.float64(np.copy(img))
h = temp_image.shape[0]
w = temp_image.shape[1]
noise = np.random.randn(h, w) * noise_sigma
noisy_image = np.zeros(temp_image.shape, np.float64)
if len(temp_image.shape) == 2:
noisy_image = temp_image + noise
else:
noisy_image[:,:,0] = temp_image[:,:,0] + noise
noisy_image[:,:,1] = temp_image[:,:,1] + noise
noisy_image[:,:,2] = temp_image[:,:,2] + noise
"""
print('min,max = ', np.min(noisy_image), np.max(noisy_image))
print('type = ', type(noisy_image[0][0][0]))
"""
return noisy_image, bboxes
#旋转:旋转后的图片需要包含所有的框,否则会对图像的原始标注造成破坏。需要注意的是,旋转时图像的一些边角可能会被切除掉,需要避免这种情况。
def _rotate_img_bboxes(img, bboxes, angle=5, scale=1.0):
'''
参考:https://blog.csdn.net/saltriver/article/details/79680189
https://www.ctolib.com/topics-44419.html
关于仿射变换:https://www.zhihu.com/question/20666664
输入:
img:图像array,(h,w,c)
bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
angle:旋转角度
scale:默认1
输出:
rot_img:旋转后的图像array
rot_bboxes:旋转后的boundingbox坐标list
'''
#---------------------- 旋转图像 ----------------------
w = img.shape[1]
h = img.shape[0]
# 角度变弧度
rangle = np.deg2rad(angle)
# 计算新图像的宽度和高度,分别为最高点和最低点的垂直距离
nw = (abs(np.sin(rangle)*h) + abs(np.cos(rangle)*w))*scale
nh = (abs(np.cos(rangle)*h) + abs(np.sin(rangle)*w))*scale
# 获取图像绕着某一点的旋转矩阵
# getRotationMatrix2D(Point2f center, double angle, double scale)
# Point2f center:表示旋转的中心点
# double angle:表示旋转的角度
# double scale:图像缩放因子
#参考:https://cloud.tencent.com/developer/article/1425373
rot_mat = cv2.getRotationMatrix2D((nw*0.5, nh*0.5), angle, scale) # 返回 2x3 矩阵
# 新中心点与旧中心点之间的位置
rot_move = np.dot(rot_mat,np.array([(nw-w)*0.5, (nh-h)*0.5,0]))
# the move only affects the translation, so update the translation
# part of the transform
rot_mat[0,2] += rot_move[0]
rot_mat[1,2] += rot_move[1]
# 仿射变换
rot_img = cv2.warpAffine(img, rot_mat, (int(math.ceil(nw)), int(math.ceil(nh))), flags=cv2.INTER_LANCZOS4) # ceil向上取整
#---------------------- 矫正boundingbox ----------------------
# rot_mat是最终的旋转矩阵
# 获取原始bbox的四个中点,然后将这四个点转换到旋转后的坐标系下
rot_bboxes = list()
for bbox in bboxes:
x_min = bbox[0]
y_min = bbox[1]
x_max = bbox[2]
y_max = bbox[3]
name = bbox[4]
point1 = np.dot(rot_mat, np.array([(x_min+x_max)/2, y_min,1]))
point2 = np.dot(rot_mat, np.array([x_max, (y_min+y_max)/2, 1]))
point3 = np.dot(rot_mat, np.array([(x_min+x_max)/2, y_max, 1]))
point4 = np.dot(rot_mat, np.array([x_min, (y_min+y_max)/2, 1]))
# 合并np.array
concat = np.vstack((point1, point2,point3,point4)) # 在竖直方向上堆叠
# 改变array类型
concat = concat.astype(np.int32)
# 得到旋转后的坐标
rx, ry, rw, rh = cv2.boundingRect(concat)
rx_min = rx
ry_min = ry
rx_max = rx+rw
ry_max = ry+rh
# 加入list中
rot_bboxes.append([rx_min, ry_min, rx_max, ry_max,name])
return rot_img, rot_bboxes
# 镜像
def _flip_pic_bboxes(img, bboxes):
'''
参考:https://blog.csdn.net/jningwei/article/details/78753607
镜像后的图片要包含所有的框
输入:
img:图像array
bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
输出:
flip_img:镜像后的图像array
flip_bboxes:镜像后的bounding box的坐标list
'''
# ---------------------- 镜像图像 ----------------------
import copy
flip_img = copy.deepcopy(img)
if random.random() < 0.5:
horizon = True
else:
horizon = False
h, w, _ = img.shape
if horizon: # 水平翻转
flip_img = cv2.flip(flip_img, -1)
else:
flip_img = cv2.flip(flip_img, 0)
# ---------------------- 矫正boundingbox ----------------------
flip_bboxes = list()
for bbox in bboxes:
x_min = bbox[0]
y_min = bbox[1]
x_max = bbox[2]
y_max = bbox[3]
name = bbox[4]
if horizon:
flip_bboxes.append([w-x_max, y_min, w-x_min, y_max, name])
else:
flip_bboxes.append([x_min, h-y_max, x_max, h-y_min, name])
return flip_img, flip_bboxes
# 读xml
def readAnnotations(xml_path):
et = ET.parse(xml_path)
element = et.getroot()
element_objs = element.findall('object')
results = []
for element_obj in element_objs:
result = []
class_name = element_obj.find('name').text
obj_bbox = element_obj.find('bndbox')
x1 = int(round(float(obj_bbox.find('xmin').text)))
y1 = int(round(float(obj_bbox.find('ymin').text)))
x2 = int(round(float(obj_bbox.find('xmax').text)))
y2 = int(round(float(obj_bbox.find('ymax').text)))
result.append(int(x1))
result.append(int(y1))
result.append(int(x2))
result.append(int(y2))
result.append(class_name) #
results.append(result)
return results
# 写xml文件,参数中tmp表示路径,imgname是文件名(没有尾缀)ps有尾缀也无所谓
def writeXml(tmp, imgname, w, h, d, bboxes):
doc = Document()
# owner
annotation = doc.createElement('annotation')
doc.appendChild(annotation)
# owner
folder = doc.createElement('folder')
annotation.appendChild(folder)
folder_txt = doc.createTextNode("VOC2007")
folder.appendChild(folder_txt)
filename = doc.createElement('filename')
annotation.appendChild(filename)
filename_txt = doc.createTextNode(imgname)
filename.appendChild(filename_txt)
# ones#
source = doc.createElement('source')
annotation.appendChild(source)
database = doc.createElement('database')
source.appendChild(database)
database_txt = doc.createTextNode("My Database")
database.appendChild(database_txt)
annotation_new = doc.createElement('annotation')
source.appendChild(annotation_new)
annotation_new_txt = doc.createTextNode("VOC2007")
annotation_new.appendChild(annotation_new_txt)
image = doc.createElement('image')
source.appendChild(image)
image_txt = doc.createTextNode("flickr")
image.appendChild(image_txt)
# owner
owner = doc.createElement('owner')
annotation.appendChild(owner)
flickrid = doc.createElement('flickrid')
owner.appendChild(flickrid)
flickrid_txt = doc.createTextNode("NULL")
flickrid.appendChild(flickrid_txt)
ow_name = doc.createElement('name')
owner.appendChild(ow_name)
ow_name_txt = doc.createTextNode("idannel")
ow_name.appendChild(ow_name_txt)
# onee#
# twos#
size = doc.createElement('size')
annotation.appendChild(size)
width = doc.createElement('width')
size.appendChild(width)
width_txt = doc.createTextNode(str(w))
width.appendChild(width_txt)
height = doc.createElement('height')
size.appendChild(height)
height_txt = doc.createTextNode(str(h))
height.appendChild(height_txt)
depth = doc.createElement('depth')
size.appendChild(depth)
depth_txt = doc.createTextNode(str(d))
depth.appendChild(depth_txt)
# twoe#
segmented = doc.createElement('segmented')
annotation.appendChild(segmented)
segmented_txt = doc.createTextNode("0")
segmented.appendChild(segmented_txt)
for bbox in bboxes:
# threes#
object_new = doc.createElement("object")
annotation.appendChild(object_new)
name = doc.createElement('name')
object_new.appendChild(name)
name_txt = doc.createTextNode(str(bbox[4]))
name.appendChild(name_txt)
pose = doc.createElement('pose')
object_new.appendChild(pose)
pose_txt = doc.createTextNode("Unspecified")
pose.appendChild(pose_txt)
truncated = doc.createElement('truncated')
object_new.appendChild(truncated)
truncated_txt = doc.createTextNode("0")
truncated.appendChild(truncated_txt)
difficult = doc.createElement('difficult')
object_new.appendChild(difficult)
difficult_txt = doc.createTextNode("0")
difficult.appendChild(difficult_txt)
# threes-1#
bndbox = doc.createElement('bndbox')
object_new.appendChild(bndbox)
xmin = doc.createElement('xmin')
bndbox.appendChild(xmin)
xmin_txt = doc.createTextNode(str(bbox[0]))
xmin.appendChild(xmin_txt)
ymin = doc.createElement('ymin')
bndbox.appendChild(ymin)
ymin_txt = doc.createTextNode(str(bbox[1]))
ymin.appendChild(ymin_txt)
xmax = doc.createElement('xmax')
bndbox.appendChild(xmax)
xmax_txt = doc.createTextNode(str(bbox[2]))
xmax.appendChild(xmax_txt)
ymax = doc.createElement('ymax')
bndbox.appendChild(ymax)
ymax_txt = doc.createTextNode(str(bbox[3]))
ymax.appendChild(ymax_txt)
print(bbox[0], bbox[1], bbox[2], bbox[3], bbox[4])
xmlname = os.path.splitext(imgname)[0]
tempfile = tmp + "/%s.xml" % xmlname
with open(tempfile, 'wb') as f:
f.write(doc.toprettyxml(indent='\t', encoding='utf-8'))
return
if __name__ == "__main__":
root = '/data/原始样本'
img_dir = root + '/img'
anno_path = root + '/xml'
# 设置数据扩增的方式
Method = 'addNoise'
# 存储新的anno位置
anno_new_dir = os.path.join(root, Method, 'xml')
if not os.path.isdir(anno_new_dir):
os.makedirs(anno_new_dir)
# 扩增后图片保存的位置
img_new_dir = os.path.join(root, Method, 'images')
if not os.path.isdir(img_new_dir):
os.makedirs(img_new_dir)
img_list = glob.glob("{}/*.jpg".format(img_dir))
for image_path in img_list:
img_org = cv2.imread(image_path)
img = img_org
file_name = os.path.basename(os.path.splitext(image_path)[0]) # 得到原图的名称
bboxes = readAnnotations(anno_path + "/" + file_name + ".xml")
print("img: {}, box: {}".format(image_path, bboxes))
new_img = img
new_bboxes = bboxes
# 选择数据扩增方式
# if Method == 'random_horizontal_flip':
# new_img, new_bboxes = random_vertical_flip(img, np.array(bboxes), 1)
# if Method == 'random_vertical_flip':
# new_img, new_bboxes = random_vertical_flip(img, np.array(bboxes), 1)
# if Method == 'random_rot90_1':
# new_img, new_bboxes = random_rot90_1(img, np.array(bboxes), 1)
# if Method == 'random_translate':
# new_img, new_bboxes = random_translate(img, np.array(bboxes), 1)
# if Method == 'random_crop':
# new_img, new_bboxes = random_crop(img, np.array(bboxes), 1)
# if Method == 'random_bright':
# new_img, new_bboxes = random_bright(img, np.array(bboxes), 1)
# if Method == 'random_swap':
# new_img, new_bboxes = random_swap(img, np.array(bboxes), 1)
# if Method == 'random_saturation':
# new_img, new_bboxes = random_saturation(img, np.array(bboxes), 1)
# if Method == 'random_hue':
# new_img, new_bboxes = random_hue(img, np.array(bboxes), 1)
if Method == 'shift': #平移
new_img, new_bboxes = _shift_pic_bboxes(img, bboxes)
if Method == 'crop': #裁剪
new_img, new_bboxes = _crop_img_bboxes(img, bboxes)
if Method == 'Light': #改变亮度
new_img, new_bboxes = _changeLight(img, bboxes)
if Method == 'addNoise': #加高斯噪声
new_img, new_bboxes = _addNoise(img, bboxes)
if Method == 'rotate': #旋转
new_img, new_bboxes = _rotate_img_bboxes(img, bboxes)
if Method == 'flip': #镜像
new_img, new_bboxes = _flip_pic_bboxes(img, bboxes)
# 保存新图像
ext = os.path.splitext(image_path)[-1] # 得到原图的后缀
new_img_name = '%s_%s%s' % (file_name,Method, ext)
cv2.imwrite(os.path.join(img_new_dir, new_img_name), new_img) # 新的命名方式为:原图名称+P+角度
# 保存新xml文件
H,W,D = new_img.shape # 得新图像的高、宽、深度,用于书写xml
writeXml(anno_new_dir, new_img_name, W, H, D, new_bboxes)
img = np.array(img)
for box in bboxes:
cv2.rectangle(img, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
cv2.putText(img, str(box[4]), (box[0], max(20, box[1])), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
# cv2.imshow(image_path, img)
img_rotate = 0
# cv2.waitKey(0)