Anti-Rhyme Pairs 【UVA - 12338】【后缀数组】
程序员文章站
2022-04-17 14:07:18
...
题目链接
题意:有N个字符串,现在给出了Q次查询,询问的是第i个字符串和第j个字符串最长相等的前缀有多长?
思路:直接上后缀数组,我们知道了每个字符串的起点的下标,然后我们可以通过返回其rank值的办法来知晓它在SA中的所在的位置,然后直接查区间的最小值即可。时间复杂度级别。
对了,千万要开够内存空间,因为这道题确确实实的卡了RE,千万要开够。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <bitset>
//#include <unordered_map>
//#include <unordered_set>
#define lowbit(x) ( x&(-x) )
#define pi 3.141592653589793
#define e 2.718281828459045
#define INF 0x3f3f3f3f
#define HalF (l + r)>>1
#define lsn rt<<1
#define rsn rt<<1|1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define myself rt, l, r
using namespace std;
typedef unsigned long long ull;
typedef unsigned int uit;
typedef long long ll;
const int maxN = 1e6 + 1e5 + 7;
struct SA
{
int n, m;
int s[maxN];
int y[maxN], x[maxN], c[maxN], sa[maxN], rk[maxN], height[maxN];
inline void get_SA()
{
for(int i=1; i<=m; i++) c[i] = 0; //桶的初始化
for(int i=1; i<=n; i++) ++c[x[i] = s[i]];
for(int i=2; i<=m; i++) c[i] += c[i - 1]; //利用差分前缀和的思想知道每个关键字最多是在第几名
for(int i=n; i>=1; i--) sa[c[x[i]]--] = i;
for(int k=1; k<=n; k<<=1)
{
int num = 0;
for(int i=n - k + 1; i<=n; i++) y[++num] = i;
for(int i=1; i<=n; i++) if(sa[i] > k) y[++num] = sa[i] - k; //是否可以作为第二关键字
for(int i=1; i<=m; i++) c[i] = 0;
for(int i=1; i<=n; i++) c[x[i]]++; //因为上一次循环已经求出这次的第一关键字了
for(int i=2; i<=m; i++) c[i] += c[i - 1];
for(int i=n; i>=1; i--) //在同一第一关键字下,按第二关键字来排
{
sa[c[x[y[i]]]--] = y[i];
y[i] = 0;
}
swap(x, y);
x[sa[1]] = 1; num = 1;
for(int i=2; i<=n; i++)
{
x[sa[i]] = (y[sa[i]] == y[sa[i - 1]] && y[sa[i] + k] == y[sa[i - 1] + k]) ? num : ++num;
}
if(num == n) break;
m = num;
}
}
inline void get_height()
{
int k = 0;
for(int i=1; i<=n; i++) rk[sa[i]] = i;
for(int i=1; i<=n; i++)
{
if(rk[i] == 1) continue; //第一名的height为0
if(k) k--; //height[i] >= height[i - 1] - 1
int j = sa[rk[i] - 1];
while(j + k <= n && i + k <= n && s[i + k] == s[j + k]) k++;
height[rk[i]] = k;
}
}
inline void clear()
{
n = 0; m = 2e5;
}
} sa;
struct BIT_Tree
{
int tree[maxN << 2];
inline void buildTree(int rt, int l, int r)
{
if(l == r) { tree[rt] = sa.height[l]; return; }
int mid = HalF;
buildTree(Lson); buildTree(Rson);
tree[rt] = min(tree[lsn], tree[rsn]);
}
inline int query(int rt, int l, int r, int ql, int qr)
{
if(ql <= l && qr >= r) return tree[rt];
int mid = HalF;
if(qr <= mid) return query(QL);
else if(ql > mid) return query(QR);
else return min(query(QL), query(QR));
}
} tree;
int N, Q, str_beg[maxN], str_end[maxN], len;
char s[10005];
int main()
{
int T; scanf("%d", &T);
for(int Cas=1; Cas <= T; Cas++)
{
sa.clear();
scanf("%d", &N);
for(int i=1; i<=N; i++)
{
str_beg[i] = sa.n + 1;
scanf("%s", s + 1);
len = (int)strlen(s + 1);
for(int j=1; j<=len; j++) sa.s[++sa.n] = s[j];
sa.s[++sa.n] = 'a' + 25 + i;
str_end[i] = sa.n;
}
sa.get_SA();
sa.get_height();
tree.buildTree(1, 2, sa.n - N);
scanf("%d", &Q);
int l, r, ii, jj;
printf("Case %d:\n", Cas);
while(Q--)
{
scanf("%d%d", &ii, &jj);
l = sa.rk[str_beg[ii]]; r = sa.rk[str_beg[jj]];
if(l > r) swap(l, r);
if(l ^ r) printf("%d\n", tree.query(1, 2, sa.n - N, l + 1, r));
else printf("%d\n", str_end[jj] - str_beg[jj]);
}
}
return 0;
}
/*
2
5
daffodilpacm
daffodiliupc
distancevector
distancefinder
distinctsubsequence
4
1 2
1 5
3 4
4 5
2
acm
icpc
2
1 2
2 2
*/
上一篇: 在jQuery中 常用的选择器介绍
下一篇: Keil常见错误汇总及处理方式