欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  后端开发

python numpy的简单用法汇总

程序员文章站 2022-04-17 11:34:38
...
python numpy的简单用法汇总

Numpy的简单用法

import numpy as np

一、创建ndarray对象

列表转换成ndarray:

>>> a = [1,2,3,4,5]
>>> np.array(a)
array([1, 2, 3, 4, 5])

取随机浮点数

>>> np.random.rand(3, 4)
array([[ 0.16215336,  0.49847764,  0.36217369,  0.6678112 ],
     [ 0.66729648,  0.86538771,  0.32621889,  0.07709784],
     [ 0.05460976,  0.3446629 ,  0.35589223,  0.3716221 ]])

取随机整数

>>> np.random.randint(1, 5, size=(3,4))
array([[2, 3, 1, 2],
     [3, 4, 4, 4],
     [4, 4, 4, 3]])

取零

>>> np.zeros((3,4))
array([[ 0.,  0.,  0.,  0.],
     [ 0.,  0.,  0.,  0.],
     [ 0.,  0.,  0.,  0.]])

取一

>>> np.ones((3,4))
array([[ 1.,  1.,  1.,  1.],
     [ 1.,  1.,  1.,  1.],
     [ 1.,  1.,  1.,  1.]])

取空(最好别用,了解一下,版本不同返回值不一样)

>>> np.empty((3,4))
array([[ 1.,  1.,  1.,  1.],
     [ 1.,  1.,  1.,  1.],
     [ 1.,  1.,  1.,  1.]])

取整数零或一

>>> np.ones((3,4),int)
array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]])
>>> np.zeros((3,4),int)
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]])

仿range命令创建ndarray:

>>> np.arange(2,10,2) # 开始,结束,步长
array([2, 4, 6, 8])

相关推荐:《Python视频教程

二、ndarray属性的查看和操作:

看ndarray属性:

>>> a = [[1,2,3,4,5],[6,7,8,9,0]]
>>> b = np.array(a)
>>> b.ndim  #维度个数(看几维)
2
>>> b.shape  #维度大小(看具体长宽)
(5,2)
>>>b.dtype
dtype('int32')

ndarray创建时指定属性:

>>> np.array([1,2,3,4,5],dtype=np.float64)
array([ 1.,  2.,  3.,  4.,  5.])
>>> np.zeros((2,5),dtype=np.int32)
array([[0, 0, 0, 0, 0],
     [0, 0, 0, 0, 0]])

属性强转:

>>> a = np.array([1,2,3,4,5],dtype=np.float64)
>>> a
array([ 1.,  2.,  3.,  4.,  5.])
>>> a.astype(np.int32)
array([1, 2, 3, 4, 5])

三、简单操作:

批量运算:

>>> a = np.array([1,2,3,4,5],dtype=np.int32)
>>> a
array([1, 2, 3, 4, 5])
>>> a + a
array([ 2,  4,  6,  8, 10])
>>> a * a
array([ 1,  4,  9, 16, 25])
>>> a - 2
array([-1,  0,  1,  2,  3])
>>> a / 2
array([ 0.5,  1. ,  1.5,  2. ,  2.5])
#等等

改变维度:

>>> a = np.array([[1,2,3,4,5],[6,7,8,9,0]],dtype=np.int32)
>>> a
array([[1, 2, 3, 4, 5],
       [6, 7, 8, 9, 0]])
>>> a.reshape((5,2))
array([[1, 2],
       [3, 4],
       [5, 6],
       [7, 8],
       [9, 0]])

矩阵转换(和改变维度有本质区别,仔细):

>>> a = np.array([[1,2,3,4,5],[6,7,8,9,0]],dtype=np.int32)
>>> a
array([[1, 2, 3, 4, 5],
       [6, 7, 8, 9, 0]])
>>> a.transpose()
array([[1, 6],
       [2, 7],
       [3, 8],
       [4, 9],
       [5, 0]])

打乱(只能打乱一维):

>>> a = np.array([[1,2],[3,4],[5,6],[7,8],[9,0]],dtype=np.int32)
>>> a
array([[1, 2],
       [3, 4],
       [5, 6],
       [7, 8],
       [9, 0]])
       
>>> np.random.shuffle(a)
>>> a
array([[9, 0],
       [1, 2],
       [7, 8],
       [5, 6],
       [3, 4]])

四、切片和索引:

一维数组:

>>> a = np.array(range(10))
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> a[3]
3
>>> a[2:9:2]
array([2, 4, 6, 8])

多维数组:

>>> a = np.array([[1,2,3,4,5],[6,7,8,9,0],[11,12,13,14,15]],dtype=np.int32)
>>> a
array([[ 1,  2,  3,  4,  5],
       [ 6,  7,  8,  9,  0],
       [11, 12, 13, 14, 15]])
       
>>> a[:, 1:4]
array([[ 2,  3,  4],
       [ 7,  8,  9],
       [12, 13, 14]])

条件索引:

>>> a = np.array([[1,2,3,4,5],[6,7,8,9,0],[11,12,13,14,15]],dtype=np.int32)
>>> a
array([[ 1,  2,  3,  4,  5],
       [ 6,  7,  8,  9,  0],
       [11, 12, 13, 14, 15]])
       
>>> a > 5
array([[False, False, False, False, False],
       [ True,  True,  True,  True, False],
       [ True,  True,  True,  True,  True]], dtype=bool)
>>> a[a>5]
array([ 6,  7,  8,  9, 11, 12, 13, 14, 15])
>>> a%3 == 0
Out[128]: 
array([[False, False,  True, False, False],
       [ True, False, False,  True,  True],
       [False,  True, False, False,  True]], dtype=bool)
>>> a[a%3 == 0]
array([ 3,  6,  9,  0, 12, 15])

五、函数(numpy核心知识点)

计算函数:

np.ceil(): 向上最接近的整数,参数是 number 或 array
np.floor(): 向下最接近的整数,参数是 number 或 array
np.rint(): 四舍五入,参数是 number 或 array
np.isnan(): 判断元素是否为 NaN(Not a Number),参数是 number 或 array
np.multiply(): 元素相乘,参数是 number 或 array
np.divide(): 元素相除,参数是 number 或 array
np.abs():元素的绝对值,参数是 number 或 array
np.where(condition, x, y): 三元运算符,x if condition else y
>>> a = np.random.randn(3,4)
>>> a
array([[ 0.37091654,  0.53809133, -0.99434523, -1.21496837],
       [ 0.00701986,  1.65776152,  0.41319601,  0.41356973],
       [-0.32922342,  1.07773886, -0.27273258,  0.29474435]])
>>> np.ceil(a)      
array([[ 1.,  1., -0., -1.],
       [ 1.,  2.,  1.,  1.],
       [-0.,  2., -0.,  1.]])
>>> np.where(a>0, 10, 0)
array([[10, 10,  0,  0],
       [10, 10, 10, 10],
       [ 0, 10,  0, 10]])

统计函数

np.mean():所有元素的平均值
np.sum():所有元素的和,参数是 number 或 array
np.max():所有元素的最大值
np.min():所有元素的最小值,参数是 number 或 array
np.std():所有元素的标准差
np.var():所有元素的方差,参数是 number 或 array
np.argmax():最大值的下标索引值,
np.argmin():最小值的下标索引值,参数是 number 或 array
np.cumsum():返回一个一维数组,每个元素都是之前所有元素的累加和
np.cumprod():返回一个一维数组,每个元素都是之前所有元素的累乘积,参数是 number 或 array
>>> a = np.arange(12).reshape(3,4).transpose()
>>> a
array([[ 0,  4,  8],
       [ 1,  5,  9],
       [ 2,  6, 10],
       [ 3,  7, 11]])
>>> np.mean(a)
5.5
>>> np.sum(a)
66
>>> np.argmax(a)
11
>>> np.std(a)
3.4520525295346629
>>> np.cumsum(a)
array([ 0,  4, 12, 13, 18, 27, 29, 35, 45, 48, 55, 66], dtype=int32)

判断函数:

np.any(): 至少有一个元素满足指定条件,返回True
np.all(): 所有的元素满足指定条件,返回True
>>> a = np.random.randn(2,3)
>>> a
array([[-0.65750548,  2.24801371, -0.26593284],
       [ 0.31447911, -1.0215645 , -0.4984958 ]])
>>> np.any(a>0)
True
>>> np.all(a>0)
False

去除重复:

np.unique(): 去重
>>> a = np.array([[1,2,3],[2,3,4]])
>>> a
array([[1, 2, 3],
       [2, 3, 4]])
>>> np.unique(a)
array([1, 2, 3, 4])

以上就是python numpy的简单用法汇总的详细内容,更多请关注其它相关文章!