欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

codeforces757E. Bash Plays with Functions(狄利克雷卷积 积性函数)

程序员文章站 2022-04-16 20:46:08
http://codeforces.com/contest/757/problem/E 题意 Sol 非常骚的一道题 首先把给的式子化一下,设$u = d$,那么$v = n / d$ $$f_r(n) = \sum_{d \mid n} \frac{f_{r - 1}(d) + f_{r - 1} ......

http://codeforces.com/contest/757/problem/E

题意

codeforces757E. Bash Plays with Functions(狄利克雷卷积 积性函数)

Sol

非常骚的一道题

首先把给的式子化一下,设$u = d$,那么$v = n / d$

$$f_r(n) = \sum_{d \mid n} \frac{f_{r - 1}(d) + f_{r - 1}(\frac{n}{d})}{2}$$

$$= \sum_{d\mid n} f_{r - 1}(d)$$


很显然,这是$f_r(n)$与$1$的狄利克雷卷积

根据归纳法可以证明$f_r(n)$为积性函数

我们可以对每个质因子分别考虑他们的贡献

考虑$f_0(p^k) = [k =0]+1$,与$p$是无关的,因此我们只要枚举$r$和$k$就好

$f_r(p^k) = \sum_{i = 0}^k f_{r - 1}(p^i)$

前缀和优化dp

#include<cstdio>
#include<cmath>
#define LL long long 
using namespace std;
const int MAXN  = 1e6 + 10, INF = 1e9 + 10, mod = 1e9 + 7;
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int prime[MAXN], tot, vis[MAXN];
LL f[MAXN][22];
void GetPrime(int N) {
    for(int i = 2; i <= N; i++) {
        if(!vis[i]) prime[++tot] = i; 
        for(int j = 1; j <= N && i * prime[j] <= N; j++) {
            vis[i * prime[j]] = 1;
            if(i % prime[j] == 0) break;
        }
    }
}
void Pre(int N, int M) {
    f[0][0] = 1;//f[i][k] f_r(p^k)
    for(int i = 1; i <= M; i++) f[0][i] = 2;
    for(int r = 1; r <= N; r++) {
        LL sum = 0;
        for(int k = 0; k <= M; k++) {
            sum += f[r - 1][k];
            (f[r][k] += sum ) %= mod;
        }
    }
}
main() {
    GetPrime(1e6 + 5);
    Pre(1e6 + 5, 21);
    int Q = read();
    while(Q--) {
        int r = read(), n = read();
        LL ans = 1;
        for(int i = 1; i <= tot && prime[i] <= sqrt(n); i++) {
            if(n % prime[i]) continue;
            int num = 0;
            while(!(n % prime[i])) num++, n /= prime[i];
            ans = 1ll * ans * (f[r][num]) % mod;
        }
        if(n > 1) ans = (1ll * ans * f[r][1]) % mod;
        printf("%I64d\n", ans);
    }
}
/*

*/