欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

MongoDB中的参数限制与阀值详析

程序员文章站 2022-04-16 14:43:18
前言 今天搜索spark mongo的资料,意外发现了mongodb的一些知识,这些都是之前没有接触过的,所以专门记录下。 (๑• ....

前言

今天搜索spark mongo的资料,意外发现了mongodb的一些知识,这些都是之前没有接触过的,所以专门记录下。 (๑• . •๑)

下面话不多说了,来一起看看详细的介绍吧

一、bson文档

  • bson文档尺寸:一个document文档最大尺寸为16m;大于16m的文档需要存储在gridfs中。
  • 文档内嵌深度:bson文档的结构(tree)深度最大为100。

二、namespaces

  • collection命名空间:.,最大长度为120字节。这也限定了database和collection的名字不能太长。
  • 命名空间的个数:对于mmapv1引擎,个数最大为大约为24000个,每个collection以及index都是一个namespace;对于wiredtiger引擎则没有这个限制。
  • namespace文件的大小:对于mmapv1引擎而言,默认大小为16m,可以通过在配置文件中修改。wiredtiger不受此限制。

三、indexes

  • index key:每条索引的key不得超过1024个字节,如果index key的长度超过此值,将会导致write操作失败。
  • 每个collection中索引的个数不得超过64个。
  • 索引名称:我们可以为index设定名称,最终全名为..$,最长不得超过128个字节。默认情况下为filed名称与index类型的组合,我们可以在创建索引时显式的指定index名字,参见createindex()方法。
  • 组合索引最多能包含31个field。

四、data

  • capped collection:如果你在创建“capped”类型的collection时指定了文档的最大个数,那么此个数不能超过2的32次方,如果没有指定最大个数,则没有限制。
  • database size:mmapv1引擎而言,每个database不得持有超过16000个数据文件,即单个database的总数据量最大为32tb,可以通过设置“smallfiles”来限定到8tb。
  • data size:对于mmavpv1引擎而言,单个mongod不能管理超过最大虚拟内存地址空间的数据集,比如linux(64位)下每个mongod实例最多可以维护64t数据。wiredtiger引擎没有此限制。
  • 每个database中collection个数:对于mmapv1引擎而然,每个database所能持有的collections个数取决于namespace文件大小(用来保存namespace)以及每个collection中indexes的个数,最终总尺寸不超过namespace文件的大小(16m)。wiredtiger引擎不受到此限制。

五、replica sets

  • 每个replica set中最多支持50个members。
  • replica set中最多可以有7个voting members。(投票者)
  • 如果没有显式的指定oplog的尺寸,其最大不会超过50g。

六、sharded clusters

  • group聚合函数,在sharding模式下不可用。请使用mapreduce或者aggregate方法。
  • coverd queries:即查询条件中的fields必须是index的一部分,且返回结果只包含index中的fields;对于sharding集群,如果query中不包含shard key,索引则无法进行覆盖。虽然_id不是“shard key”,但是如果查询条件中只包含_id,且返回的结果中也只需要_id字段值,则可以使用覆盖查询,不过这个查询似乎并没有什么意义(除非是检测此_id的document是否存在)。
  • 对于已经存有数据的collections开启sharding(原来非sharding),则其最大数据不得超过256g。当collection被sharding之后,那么它可以存储任意多的数据。
  • 对于sharded collection,update、remove对单条数据操作(操作选项为multi:false或者justone),必须指定shard key或者_id字段;否则将会抛出error。
  • 唯一索引:shards之间不支持唯一索引,除非这个“shard key”是唯一索引的最左前缀。比如collection的shard key为{“zipcode”:1,”name”: 1},如果你想对collection创建唯一索引,那么唯一索引必须将zipcode和name作为索引的最左前缀,比如:collection.createindex({“zipcode”:1,”name”:1,”company”:1},{unique:true})。
  • 在chunk迁移时允许的最大文档个数:如果一个chunk中documents的个数超过250000(默认chunk大小为64m)时,或者document个数大于 1.3 *(chunk最大尺寸(有配置参数决定)/ document平均尺寸),此chunk将无法被“move”(无论是balancer还是人工干预),必须等待split之后才能被move。

七、shard key

  • shard key的长度不得超过512个字节。
  • “shard key索引”可以为基于shard key的正序索引,或者以shard key开头的组合索引。shard key索引不能是multikey索引(基于数组的索引)、text索引或者geo索引。
  • shard key是不可变的,无论何时都不能修改document中的shard key值。如果需要变更shard key,则需要手动清洗数据,即全量dump原始数据,然后修改并保存在新的collection中。
  • 单调递增(递减)的shard key会限制insert的吞吐量;如果_id是shard key,需要知道_id是objectid()生成,它也是自增值。对于单调递增的shard key,collection上的所有insert操作都会在一个shard节点上进行,那么此shard将会承载cluster的全部insert操作,因为单个shard节点的资源有限,因此整个cluster的insert量会因此受限。如果cluster主要是read、update操作,将不会有这方面的限制。为了避免这个问题,可以考虑使用“hashed shard key”或者选择一个非单调递增key作为shard key。(rang shard key 和hashed shard key各有优缺点,需要根据query的情况而定)。

八、operations

  • 如果mongodb不能使用索引排序来获取documents,那么参与排序的documents尺寸需要小于32m。
  • aggregation pileline操作。pipeline stages限制在100m内存,如果stage超过此限制将会发生错误,为了能处理较大的数据集,请开启“allowdiskuse”选项,即允许pipeline stages将额外的数据写入临时文件。

九、命名规则

  • database的命名区分大小写。
  • database名称中不要包含:/ .‘'$*<>:|?
  • database名称长度不能超过64个字符。
  • collection名称可以以“_”或者字母字符开头,但是不能包含”$”符号,不能为空字符或者null,不能以“system.”开头,因为这是系统保留字。
  • document字段名不能包含“.”或者null,且不能以“$”开头,因为$是一个“引用符号”。

最后记录下json嵌套中含有列表的查询方法,样例数据:

{
 "_id" : objectid("5c6cc376a589c200018f7312"),
 "id" : "9472",
 "data" : {
 "name" : "测试",
 "publish_date" : "2009-05-15",
 "authors" : [ 
  {
  "author_id" : 3053,
  "author_name" : "测试数据"
  }
 ],
 }
}

我要查询authors中的author_id,query可以这样写:

db.getcollection().find({'data.authors.0.author_id': 3053})

用0来代表第一个索引,点代表嵌套结构。但是spark mongo中是不能这样导入的,需要使用别的方法。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对的支持。