欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

BZOJ4766: 文艺计算姬

程序员文章站 2022-04-16 10:52:48
Description "奋战三星期,造台计算机"。小W响应号召,花了三星期造了台文艺计算姬。文艺计算姬比普通计算机有更多的艺 术细胞。普通计算机能计算一个带标号完全图的生成树个数,而文艺计算姬能计算一个带标号完全二分图的生成树 个数。更具体地,给定一个一边点数为n,另一边点数为m,共有n*m条边的 ......
Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 737  Solved: 402
[Submit][Status][Discuss]

Description

"奋战三星期,造台计算机"。小W响应号召,花了三星期造了台文艺计算姬。文艺计算姬比普通计算机有更多的艺
术细胞。普通计算机能计算一个带标号完全图的生成树个数,而文艺计算姬能计算一个带标号完全二分图的生成树
个数。更具体地,给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图K_{n,m},计算姬能快
速算出其生成树个数。小W不知道计算姬算的对不对,你能帮助他吗?
 

 

Input

仅一行三个整数n,m,p,表示给出的完全二分图K_{n,m}
1 <= n,m,p <= 10^18
 

 

Output

仅一行一个整数,表示完全二分图K_{n,m}的生成树个数,答案需要模p。
 

 

Sample Input

2 3 7

Sample Output

5

HINT

 

Source

 

算法1

结合MatrixTree定理打表或者归纳证明

算法2

根据prufe

r因为prufer序列对应着唯一的一棵树,问题转为计算有多少合法的prufer序列。 
“一种生成Prufer序列的方法是迭代删点,直到原图仅剩两个点。”根据prufer序列的性质,最后剩下的两个点一定有一条边,在二分图中有连边的两点一定处于不同集合。在删除时会“移去所有叶子节点(度为1的顶点)中标号最小的顶点和相连的边,并把与它相邻的点的编号加入Prufer序列中”,每删除一个点都需要将与它连边的点加到prufer序列中,而二分图中的边两端的点一定属于不同集合,那么A集合有n-1个点被删除,也就是说B集合中的数需要被加入n-1次,共有$m^n1$种可能;B集合同理,有m-1个点被删除,也就是说A集合中的数需要被加入m-1次,共有$n^m1$种可能。 
两种情况相乘得到答案为$n^{m1}m^{n1}$

 

 

#include<cstdio>
#include<cstring>
#include<algorithm>
#define int long long 
using namespace std;
const int MAXN=1e6+10,INF=1e4+10;
inline int read()
{
    char c=getchar();int x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
    return x*f;
}
int fastmul(int a,int p,int mod)
{
    int base=0;
    while(p)
    {
        if(p&1) base=(base+a)%mod;
        a=(a+a)%mod;
        p>>=1;
    }
    return base;
}
int fastpow(int a,int p,int mod)
{
    int base=1;
    while(p)
    {
        if(p&1) base=fastmul(base,a,mod)%mod;
        a=fastmul(a,a,mod)%mod;
        p>>=1;
    }
    return base;
}
main()
{
    int N=read(),M=read(),P=read();
    printf("%lld",fastmul(fastpow(N,M-1,P),fastpow(M,N-1,P),P)%P);
     return 0;
}