欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python垃圾回收机制

程序员文章站 2022-04-16 10:25:54
对于Python垃圾回收机制主要有三个,首先是使用引用计数来跟踪和回收垃圾,为了解决循环 引用问题,就采用标记-清除的方法,标记-清除的方法所带来的额外操作实际上与系统中总的内存 块的总数是相关的,当需要回收的内存块越多,垃圾检查带来的额外操作就越多,为了提高垃圾收集 的效率,采用“空间换时间的策略 ......

对于Python垃圾回收机制主要有三个,首先是使用引用计数来跟踪和回收垃圾,为了解决循环
引用问题,就采用标记-清除的方法,标记-清除的方法所带来的额外操作实际上与系统中总的内存
块的总数是相关的,当需要回收的内存块越多,垃圾检查带来的额外操作就越多,为了提高垃圾收集
的效率,采用“空间换时间的策略”,即使用分代机制,对于长时间没有被回收的内存就减少对它的
垃圾回收效率。

首先看一下Python的内存管理架构:

layer 3: Object-specific memory(int/dict/list/string....)
Python 实现并维护
更高抽象层次的内存管理策略, 主要是各类特定对象的缓冲池机制

layer 2: Python's object allocator
Python 实现并维护
实现了创建/销毁Python对象的接口(PyObject_New/Del), 涉及对象参数/引用计数等

layer 1: Python's raw memory allocator (PyMem_ API)
Python 实现并维护, 包装了第0层的内存管理接口, 提供统一的raw memory管理接口
封装的原因: 不同操作系统 C 行为不一定一致, 保证可移植性, 相同语义相同行为

layer 0: Underlying general-purpose allocator (ex: C library malloc)
操作系统提供的内存管理接口, 由操作系统实现并管理, Python不能干涉这一层的行为

引用计数机制

引用计数是一种垃圾收集机制,而且也是一种最直观,最简单的垃圾回收技术 当一个对象的引用被创建或者复制时,对象的引用计数加1;当一个对象的引用被销毁 对象的引用计数减1。如果对象的引用计数减少为0,那么就意味着对象已经不会被任何人使用,可以将其
所占有的内存释放。
引用计数机制的优点:实时性,对于任何内存一旦没有指向它的引用,就会立即被回收(这里需要满足阈值才可以)
引用计数机制的缺点:引用计数机制所带来的维护引用计数的额外操作与Python运行中所运行的内存分配和释放,引用赋值的
次数是成正比的,为了与引用计数机制搭配,在内存的分配和释放上获得最高的效率,Python设计了大量的
内存池机制,减少运行期间malloc和free的操作。

>>> from sys import getrefcount
>>> a = [1,2,3]
>>> getrefcount(a)
2
>>> b =a
>>> getrefcount(a)
3
>>>

标记-清除机制

引用计数机制有个致命的弱点,就是可能存在循环引用的问题:
一组对象的引用计数都不为0,然而这些对象实际上并没有被任何外部变量引用,它们之间只是相互引用,这意味这个不会
有人使用这组对象,应该回收这些对象所占的内存,然后由于互相引用的存在, 每个对象的引用计数都不为0,因此这些对象
所占用的内存永远不会被回收。
标记-清除机制就是为了解决循环引用的问题。首先只有container对象之间才会产生循环引用,所谓container对象即是内部
可持有对其他对象的引用的对象,比如list、dict、class等,而像PyIntObject、PyStringObject这些是绝不可能产生循环引用的
所以Python的垃圾回收机制运行时,只需要检查这些container对象,为了跟踪每个container,需要将这些对象组织到一个集合中。
Python采用了一个双向链表,所以的container对象在创建之后,就会被插入到这个链表中。这个链表也叫作可收集对象链表。

为了解决循环引用的问题,提出了有效引用计数的概念,即循环引用的两个对象引用计数不为0,实际上有效的引用计数为0
假设两个对象为A、B,我们从A出发,因为它有一个对B的引用,则将B的引用计数减1;然后顺着引用达到B,因为B有一个对A的引用,
同样将A的引用减1,这样,就完成了循环引用对象间环摘除。但是这样直接修改真实的引用计数,可能存在悬空引用的问题。
所以采用修改计数计数副本的方法。
这个计数副本的唯一作用是寻找root object集合(该集合中的对象是不能被回收的)。当成功寻找到root object集合之后,
我们就可以从root object出发,沿着引用链,一个接一个的标记不能回收的内存。首先将现在的内存链表一分为二,
一条链表中维护root object集合,成为root链表,而另外一条链表中维护剩下的对象,成为unreachable链表。之所以要剖成两个链表,
是基于这样的一种考虑:现在的unreachable可能存在被root链表中的对象,直接或间接引用的对象,这些对象是不能被回收的,
一旦在标记的过程中,发现这样的对象,就将其从unreachable链表中移到root链表中;当完成标记后,unreachable链表中剩下
的所有对象就是名副其实的垃圾对象了,接下来的垃圾回收只需限制在unreachable链表中即可。

分代回收

分代回收的思想:将系统中的所有内存块根据其存活时间划分为不同的集合,每一个集合就称为一个“代”
垃圾收集的频率随着“代”的存活时间的增大而减小,也就是说,活的越长的对象,就越可能不是垃圾,就应该
越少去收集。当某一代对象经历过垃圾回收,依然存活,那么它就被归入下一代中。
在Python中总共有三个“代”,每个代其实就是上文中所提到的一条可收集对象链表。下面的数组就是用于分代
垃圾收集的三个“代”。

#define NUM_GENERATIONS 3
#define GEN_HEAD(n) (&generations[n].head)

// 三代都放到这个数组中
/* linked lists of container objects */
static struct gc_generation generations[NUM_GENERATIONS] = {
/* PyGC_Head, threshold, count */
{{{GEN_HEAD(0), GEN_HEAD(0), 0}}, 700, 0}, //700个container, 超过立即触发垃圾回收机制
{{{GEN_HEAD(1), GEN_HEAD(1), 0}}, 10, 0}, // 10个
{{{GEN_HEAD(2), GEN_HEAD(2), 0}}, 10, 0}, // 10个
};

PyGC_Head *_PyGC_generation0 = GEN_HEAD(0);

其中存在三个阈值,分别是700,10,10
可以通过get_threshold()方法获得阈值:

import gc
print(gc.get_threshold())
(700, 10, 10) 

其中第一个阈值表示第0代链表最多可以容纳700个container对象,超过了这个极限值,就会立即出发垃圾回收机制。

后面两个阈值10是分代有关系,就是每10次0代垃圾回收,会配合1次1代的垃圾回收;而每10次1代的垃圾回收,
才会有1次的2代垃圾回收。也就是空间换时间的体现。


垃圾回收的流程:
--> 分配内存的时候发现超过阈值(第0代的container个数),触发垃圾回收
--> 将所有可收集对象链表放在一起(将比当前处理的“代”更年轻的"代"的链表合并到当前”代“中)
--> 计算有效引用计数
--> 根据有效引用计数分为计数等于0和大于0两个集合
--> 引用计数大于0的对象,放入下一代
--> 引用计数等于0的对象,执行回收
--> 回收遍历容器内的各个元素, 减掉对应元素引用计数(破掉循环引用)
--> python底层内存管理机制回收内存

参考文档:
http://www.cnblogs.com/vamei/p/3232088.html
http://python.jobbole.com/83548/
http://python.jobbole.com/82061/
python源码剖析