欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

RPC原理以及GRPC详解

程序员文章站 2022-04-16 10:21:05
一、RPC原理 1、RPC框架由来 单体应用体量越来越大,代码不好维护和管理,所以就产生了微服务架构,按照公共或功能模块拆分为一个个独立的服务,然后各独立的服务之间可以相互调用。 微服务之间相互调用,该如何实现? 首先要解决下面5个问题: 1、如何规定远程调用的语法? 2、如何传递参数? 3、如何表 ......

一、rpc原理

1、rpc框架由来

单体应用体量越来越大,代码不好维护和管理,所以就产生了微服务架构,按照公共或功能模块拆分为一个个独立的服务,然后各独立的服务之间可以相互调用。

微服务之间相互调用,该如何实现?
首先要解决下面5个问题:
1、如何规定远程调用的语法?
2、如何传递参数?
3、如何表示数据?
4、如何知道一个服务端都实现了哪些远程调用?从哪个端口可以访问这个远程调用?
5、发生了错误、重传、丢包、性能等问题怎么办?

大家可能都写过socket或则http通信,简单的client访问server的模式,认为通过这个就可以解决服务之间的相互调用了,但是考虑下上面5个问题,处理起来就不是那么容易的事情了,非个人可以完成的工作。

于是就诞生了rpc框架,让我们不用管底层实现,简单好用:
RPC原理以及GRPC详解

2、rpc框架原理

当客户端的应用想发起一个远程调用时,它实际是调用客户端的 stub。它负责将调用的接口、方法和参数,通过约定的协议规范进行编码,并通过本地的 rpcruntime 进行传输,将调用网络包发送到服务器。服务器端的 rpcruntime 收到请求后,交给服务器端的 stub 进行解码,然后调用服务端的方法,服务端执行方法,返回结果,服务器端的 stub 将返回结果编码后,发送给客户端,客户端的 rpcruntime 收到结果,发给客户端的 stub 解码得到结果,返回给客户端。

1、对于客户端而言,这些过程是透明的,就像本地调用一样;对于服务端而言,专注于业务逻辑的处理就可以了。
2、对于 stub 层,处理双方约定好的语法、语义、封装、解封装。
3、对于 rpcruntime,主要处理高性能的传输,以及网络的错误和异常。

来看一下rpc框架是如何解决上面5个问题的:1、2、3的问题可以由stub层解决,4的问题可以由服务注册和发布解决,5的问题可以由rpcruntime解决。

二、grpc原理

grpc 是一个高性能、开源和通用的 rpc 框架,面向移动和 http/2 设计。目前提供 c、java 和 go 语言版本,分别是:grpc, grpc-java, grpc-go. 其中 c 版本支持 c, c++, node.js, python, ruby, objective-c, php 和 c# 支持。

本文以go语言版本讲解
1、golang安装grpc

2、protocol buffer原理文章


3、grpc-go github地址:

grpc-go 的stub层协议约定问题通过.proto文件约定好服务接口、参数等,通过工具protoc-gen-go生成客户端和服务端共用的对照表,想生成什么语言文件就用相应的插件,这样就实现了跨语言。
生成go语言文件使用命令如下:
protoc --go_out=plugins=grpc:. *.proto
grpc rpcruntime层基于http/2设计,带来诸如双向流、流控、头部压缩、单 tcp 连接上的多复用请求等特性。

grpc server端启动

1、整体启动过程

func main() {
    //解析运行参数
    flag.parse()
    //配置监听协议、地址、端口
    lis, err := net.listen("tcp", fmt.sprintf("localhost:%d", *port))
    if err != nil {
        log.fatalf("failed to listen: %v", err)
    }

    //grpc额外的服务配置,这里主要是需不需要加密
    var opts []grpc.serveroption
    if *tls {
        if *certfile == "" {
            *certfile = testdata.path("server1.pem")
        }
        if *keyfile == "" {
            *keyfile = testdata.path("server1.key")
        }
        creds, err := credentials.newservertlsfromfile(*certfile, *keyfile)
        if err != nil {
            log.fatalf("failed to generate credentials %v", err)
        }
        opts = []grpc.serveroption{grpc.creds(creds)}
    }
    //grpc服务初始化,绑定一些配置参数
    grpcserver := grpc.newserver(opts...)
    //把.proto文件中定义的接口api实现注册到grpc服务上,方便调用
    pb.registerrouteguideserver(grpcserver, newserver())
    //grpc服务启动,开始监听
    grpcserver.serve(lis)
}

2、serve函数

关键处理就是一个for循环。如果accept() 返回错误,并且错误是临时性的,那么会有重试,重试时间以5ms翻倍增长,直到1s。

for {
        rawconn, err := lis.accept()
        //错误处理
        if err != nil {
            if ne, ok := err.(interface {
                temporary() bool
            }); ok && ne.temporary() {
                if tempdelay == 0 {
                    tempdelay = 5 * time.millisecond
                } else {
                    tempdelay *= 2
                }
                if max := 1 * time.second; tempdelay > max {
                    tempdelay = max
                }
                s.mu.lock()
                s.printf("accept error: %v; retrying in %v", err, tempdelay)
                s.mu.unlock()
                timer := time.newtimer(tempdelay)
                select {
                case <-timer.c:
                case <-s.quit.done():
                    timer.stop()
                    return nil
                }
                continue
            }
            s.mu.lock()
            s.printf("done serving; accept = %v", err)
            s.mu.unlock()

            if s.quit.hasfired() {
                return nil
            }
            return err
        }
        tempdelay = 0
        // start a new goroutine to deal with rawconn so we don't stall this accept
        // loop goroutine.
        //
        // make sure we account for the goroutine so gracefulstop doesn't nil out
        // s.conns before this conn can be added.
        s.servewg.add(1)
        //重新启动一个goroutine处理accept的连接
        go func() {
            s.handlerawconn(rawconn)
            s.servewg.done()
        }()
    }

3、handlerawconn函数

主要作用就是获取一个服务端的transport,并开一个goroutine等待处理stream,里面会涉及到调用注册的方法。

st := s.newhttp2transport(conn, authinfo)
    if st == nil {
        return
    }

    rawconn.setdeadline(time.time{})
    if !s.addconn(st) {
        return
    }
    go func() {
        s.servestreams(st)
        s.removeconn(st)
    }()

grpc client端启动

1、建立连接和绑定实现的接口

//解析运行参数
    flag.parse()
    //连接的一些配置,主要是加密,安全、阻塞
    var opts []grpc.dialoption
    if *tls {
        if *cafile == "" {
            *cafile = testdata.path("ca.pem")
        }
        creds, err := credentials.newclienttlsfromfile(*cafile, *serverhostoverride)
        if err != nil {
            log.fatalf("failed to create tls credentials %v", err)
        }
        opts = append(opts, grpc.withtransportcredentials(creds))
    } else {
        opts = append(opts, grpc.withinsecure())
    }

    opts = append(opts, grpc.withblock())
    //建立一个连接
    conn, err := grpc.dial(*serveraddr, opts...)
    if err != nil {
        log.fatalf("fail to dial: %v", err)
    }
    defer conn.close()
    
    //创建一个实现了.proto文件定义的接口api的client
    client := pb.newrouteguideclient(conn)

2、client调用方式

unary rpc: 一元rpc

func (c *routeguideclient) getfeature(ctx context.context, in *point, opts ...grpc.calloption) (*feature, error) {
    out := new(feature)
    err := c.cc.invoke(ctx, "/routeguide.routeguide/getfeature", in, out, opts...)
    if err != nil {
        return nil, err
    }
    return out, nil
}

// printfeature gets the feature for the given point.
func printfeature(client pb.routeguideclient, point *pb.point) {
    log.printf("getting feature for point (%d, %d)", point.latitude, point.longitude)
    ctx, cancel := context.withtimeout(context.background(), 10*time.second)
    defer cancel()
    feature, err := client.getfeature(ctx, point)
    if err != nil {
        log.fatalf("%v.getfeatures(_) = _, %v: ", client, err)
    }
    log.println(feature)
}

// getfeature returns the feature at the given point.
func (s *routeguideserver) getfeature(ctx context.context, point *pb.point) (*pb.feature, error) {
    for _, feature := range s.savedfeatures {
        if proto.equal(feature.location, point) {
            return feature, nil
        }
    }
    // no feature was found, return an unnamed feature
    return &pb.feature{location: point}, nil
}

server-side streaming rpc: 服务端流式rpc

func (c *routeguideclient) listfeatures(ctx context.context, in *rectangle, opts ...grpc.calloption) (routeguide_listfeaturesclient, error) {
    stream, err := c.cc.newstream(ctx, &_routeguide_servicedesc.streams[0], "/routeguide.routeguide/listfeatures", opts...)
    if err != nil {
        return nil, err
    }
    x := &routeguidelistfeaturesclient{stream}
    if err := x.clientstream.sendmsg(in); err != nil {
        return nil, err
    }
    if err := x.clientstream.closesend(); err != nil {
        return nil, err
    }
    return x, nil
}

// printfeatures lists all the features within the given bounding rectangle.
func printfeatures(client pb.routeguideclient, rect *pb.rectangle) {
    log.printf("looking for features within %v", rect)
    ctx, cancel := context.withtimeout(context.background(), 10*time.second)
    defer cancel()
    stream, err := client.listfeatures(ctx, rect)
    if err != nil {
        log.fatalf("%v.listfeatures(_) = _, %v", client, err)
    }
    for {
        feature, err := stream.recv()
        if err == io.eof {
            break
        }
        if err != nil {
            log.fatalf("%v.listfeatures(_) = _, %v", client, err)
        }
        log.println(feature)
    }
}

// listfeatures lists all features contained within the given bounding rectangle.
func (s *routeguideserver) listfeatures(rect *pb.rectangle, stream pb.routeguide_listfeaturesserver) error {
    for _, feature := range s.savedfeatures {
        if inrange(feature.location, rect) {
            if err := stream.send(feature); err != nil {
                return err
            }
        }
    }
    return nil
}

client-side streaming rpc: 客户端流式rpc

func (c *routeguideclient) recordroute(ctx context.context, opts ...grpc.calloption) (routeguide_recordrouteclient, error) {
    stream, err := c.cc.newstream(ctx, &_routeguide_servicedesc.streams[1], "/routeguide.routeguide/recordroute", opts...)
    if err != nil {
        return nil, err
    }
    x := &routeguiderecordrouteclient{stream}
    return x, nil
}

// runrecordroute sends a sequence of points to server and expects to get a routesummary from server.
func runrecordroute(client pb.routeguideclient) {
    // create a random number of random points
    r := rand.new(rand.newsource(time.now().unixnano()))
    pointcount := int(r.int31n(100)) + 2 // traverse at least two points
    var points []*pb.point
    for i := 0; i < pointcount; i++ {
        points = append(points, randompoint(r))
    }
    log.printf("traversing %d points.", len(points))
    ctx, cancel := context.withtimeout(context.background(), 10*time.second)
    defer cancel()
    stream, err := client.recordroute(ctx)
    if err != nil {
        log.fatalf("%v.recordroute(_) = _, %v", client, err)
    }
    for _, point := range points {
        if err := stream.send(point); err != nil {
            log.fatalf("%v.send(%v) = %v", stream, point, err)
        }
    }
    reply, err := stream.closeandrecv()
    if err != nil {
        log.fatalf("%v.closeandrecv() got error %v, want %v", stream, err, nil)
    }
    log.printf("route summary: %v", reply)
}


// recordroute records a route composited of a sequence of points.
//
// it gets a stream of points, and responds with statistics about the "trip":
// number of points,  number of known features visited, total distance traveled, and
// total time spent.
func (s *routeguideserver) recordroute(stream pb.routeguide_recordrouteserver) error {
    var pointcount, featurecount, distance int32
    var lastpoint *pb.point
    starttime := time.now()
    for {
        point, err := stream.recv()
        if err == io.eof {
            endtime := time.now()
            return stream.sendandclose(&pb.routesummary{
                pointcount:   pointcount,
                featurecount: featurecount,
                distance:     distance,
                elapsedtime:  int32(endtime.sub(starttime).seconds()),
            })
        }
        if err != nil {
            return err
        }
        pointcount++
        for _, feature := range s.savedfeatures {
            if proto.equal(feature.location, point) {
                featurecount++
            }
        }
        if lastpoint != nil {
            distance += calcdistance(lastpoint, point)
        }
        lastpoint = point
    }
}

bidirectional streaming rpc : 双向流式rpc

func (c *routeguideclient) routechat(ctx context.context, opts ...grpc.calloption) (routeguide_routechatclient, error) {
    stream, err := c.cc.newstream(ctx, &_routeguide_servicedesc.streams[2], "/routeguide.routeguide/routechat", opts...)
    if err != nil {
        return nil, err
    }
    x := &routeguideroutechatclient{stream}
    return x, nil
}

// runroutechat receives a sequence of route notes, while sending notes for various locations.
func runroutechat(client pb.routeguideclient) {
    notes := []*pb.routenote{
        {location: &pb.point{latitude: 0, longitude: 1}, message: "first message"},
        {location: &pb.point{latitude: 0, longitude: 2}, message: "second message"},
        {location: &pb.point{latitude: 0, longitude: 3}, message: "third message"},
        {location: &pb.point{latitude: 0, longitude: 1}, message: "fourth message"},
        {location: &pb.point{latitude: 0, longitude: 2}, message: "fifth message"},
        {location: &pb.point{latitude: 0, longitude: 3}, message: "sixth message"},
    }
    ctx, cancel := context.withtimeout(context.background(), 10*time.second)
    defer cancel()
    stream, err := client.routechat(ctx)
    if err != nil {
        log.fatalf("%v.routechat(_) = _, %v", client, err)
    }
    waitc := make(chan struct{})
    go func() {
        for {
            in, err := stream.recv()
            if err == io.eof {
                // read done.
                close(waitc)
                return
            }
            if err != nil {
                log.fatalf("failed to receive a note : %v", err)
            }
            log.printf("got message %s at point(%d, %d)", in.message, in.location.latitude, in.location.longitude)
        }
    }()
    for _, note := range notes {
        if err := stream.send(note); err != nil {
            log.fatalf("failed to send a note: %v", err)
        }
    }
    stream.closesend()
    <-waitc
}

// routechat receives a stream of message/location pairs, and responds with a stream of all
// previous messages at each of those locations.
func (s *routeguideserver) routechat(stream pb.routeguide_routechatserver) error {
    for {
        in, err := stream.recv()
        if err == io.eof {
            return nil
        }
        if err != nil {
            return err
        }
        key := serialize(in.location)

        s.mu.lock()
        s.routenotes[key] = append(s.routenotes[key], in)
        // note: this copy prevents blocking other clients while serving this one.
        // we don't need to do a deep copy, because elements in the slice are
        // insert-only and never modified.
        rn := make([]*pb.routenote, len(s.routenotes[key]))
        copy(rn, s.routenotes[key])
        s.mu.unlock()

        for _, note := range rn {
            if err := stream.send(note); err != nil {
                return err
            }
        }
    }
}

client 连接底层两个主要方法

1、invoke函数

newclientstream:获取传输层 trasport 并组合封装到 clientstream 中返回,在这块会涉及负载均衡、超时控制、 encoding、 stream 的动作,与服务端基本一致的行为。
cs.sendmsg:发送 rpc 请求出去,但其并不承担等待响应的功能。
cs.recvmsg:阻塞等待接受到的 rpc 方法响应结果。

// invoke sends the rpc request on the wire and returns after response is
// received.  this is typically called by generated code.
//
// all errors returned by invoke are compatible with the status package.
func (cc *clientconn) invoke(ctx context.context, method string, args, reply interface{}, opts ...calloption) error {
    // allow interceptor to see all applicable call options, which means those
    // configured as defaults from dial option as well as per-call options
    opts = combine(cc.dopts.calloptions, opts)

    if cc.dopts.unaryint != nil {
        return cc.dopts.unaryint(ctx, method, args, reply, cc, invoke, opts...)
    }
    return invoke(ctx, method, args, reply, cc, opts...)
}

func invoke(ctx context.context, method string, req, reply interface{}, cc *clientconn, opts ...calloption) error {
    cs, err := newclientstream(ctx, unarystreamdesc, cc, method, opts...)
    if err != nil {
        return err
    }
    if err := cs.sendmsg(req); err != nil {
        return err
    }
    return cs.recvmsg(reply)
}

2、newstream函数

// newstream creates a new stream for the client side. this is typically
// called by generated code. ctx is used for the lifetime of the stream.
//
// to ensure resources are not leaked due to the stream returned, one of the following
// actions must be performed:
//
//      1. call close on the clientconn.
//      2. cancel the context provided.
//      3. call recvmsg until a non-nil error is returned. a protobuf-generated
//         client-streaming rpc, for instance, might use the helper function
//         closeandrecv (note that closesend does not recv, therefore is not
//         guaranteed to release all resources).
//      4. receive a non-nil, non-io.eof error from header or sendmsg.
//
// if none of the above happen, a goroutine and a context will be leaked, and grpc
// will not call the optionally-configured stats handler with a stats.end message.
func (cc *clientconn) newstream(ctx context.context, desc *streamdesc, method string, opts ...calloption) (clientstream, error) {
    // allow interceptor to see all applicable call options, which means those
    // configured as defaults from dial option as well as per-call options
    opts = combine(cc.dopts.calloptions, opts)

    if cc.dopts.streamint != nil {
        return cc.dopts.streamint(ctx, desc, cc, method, newclientstream, opts...)
    }
    return newclientstream(ctx, desc, cc, method, opts...)
}

参考资料

1.从实践到原理,带你参透grpc.
2..