欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

folly无锁队列,尝试添加新的函数(续)

程序员文章站 2022-04-16 10:04:37
基于上一篇文章,dropHead取出节点后,删除节点,会出现内存访问的问题。按照这个逻辑,如果将移出的节点保存到一个无锁队列中,然后在需要节点的时候,从这个备用的无锁队列中取出节点,那么应该就可以避开之前的问题,现在重要的是,判断在程序运行 过程中,备用的琐碎队列的大致长度,会不会需要耗费很多的资源 ......

基于上一篇文章,dropHead取出节点后,删除节点,会出现内存访问的问题。按照这个逻辑,如果将移出的节点保存到一个无锁队列中,然后在需要节点的时候,从这个备用的无锁队列中取出节点,那么应该就可以避开之前的问题,现在重要的是,判断在程序运行

过程中,备用的琐碎队列的大致长度,会不会需要耗费很多的资源。

下面为修改后的folly代码:

/*
* Copyright 2014-present Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*   http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#pragma once

#include <atomic>
#include <cassert>
#include <utility>

namespace folly {

    /**
    * A very simple atomic single-linked list primitive.
    *
    * Usage:
    *
    * class MyClass {
    *   AtomicIntrusiveLinkedListHook<MyClass> hook_;
    * }
    *
    * AtomicIntrusiveLinkedList<MyClass, &MyClass::hook_> list;
    * list.insert(&a);
    * list.sweep([] (MyClass* c) { doSomething(c); }
    */
    template <class T>
    struct AtomicIntrusiveLinkedListHook {
        T* next{ nullptr };
    };

    template <class T, AtomicIntrusiveLinkedListHook<T> T::*HookMember>
    class AtomicIntrusiveLinkedList {
    public:
        AtomicIntrusiveLinkedList() {}
        AtomicIntrusiveLinkedList(const AtomicIntrusiveLinkedList&) = delete;
        AtomicIntrusiveLinkedList& operator=(const AtomicIntrusiveLinkedList&) =
            delete;
        AtomicIntrusiveLinkedList(AtomicIntrusiveLinkedList&& other) noexcept {
            auto tmp = other.head_.load();
            other.head_ = head_.load();
            head_ = tmp;
        }
        AtomicIntrusiveLinkedList& operator=(
            AtomicIntrusiveLinkedList&& other) noexcept {
            auto tmp = other.head_.load();
            other.head_ = head_.load();
            head_ = tmp;

            return *this;
        }

        /**
        * Note: list must be empty on destruction.
        */
        ~AtomicIntrusiveLinkedList() {
            assert(empty());
        }

        bool empty() const {
            return head_.load() == nullptr;
        }

        /**
        * Atomically insert t at the head of the list.
        * @return True if the inserted element is the only one in the list
        *         after the call.
        */
        bool insertHead(T* t) {
            assert(next(t) == nullptr);

            auto oldHead = head_.load(std::memory_order_relaxed);
            do {
                next(t) = oldHead;
                /* oldHead is updated by the call below.
                NOTE: we don't use next(t) instead of oldHead directly due to
                compiler bugs (GCC prior to 4.8.3 (bug 60272), clang (bug 18899),
                MSVC (bug 819819); source:
                http://en.cppreference.com/w/cpp/atomic/atomic/compare_exchange */
            } while (!head_.compare_exchange_weak(oldHead, t,
                std::memory_order_release,
                std::memory_order_relaxed));

            return oldHead == nullptr;
        }

        /**
        * Replaces the head with nullptr,
        * and calls func() on the removed elements in the order from tail to head.
        * Returns false if the list was empty.
        */
        template <typename F>
        bool sweepOnce(F&& func) {
            if (auto head = head_.exchange(nullptr)) {
                auto rhead = reverse(head);
                unlinkAll(rhead, std::forward<F>(func));
                return true;
            }
            return false;
        }

        // new function
        // if std::memory_order_acquire applies to next(oldHead)(the first one, the argument of compare_exchange_weak)
        // and I don't know if following bugs affect the code
        // GCC prior to 4.8.3 (bug 60272), clang prior to 2014-05-05 (bug 18899)
        // MSVC prior to 2014-03-17 (bug 819819). 
        // template <typename F>
        T* sweepHead()
        {
            // handle if the list is not empty
            auto oldHead = head_.load(std::memory_order_relaxed);

            while (oldHead != nullptr && !head_.compare_exchange_weak(oldHead, next(oldHead), std::memory_order_acquire, std::memory_order_relaxed))
                ;
            // if drop out head successfully
            if (oldHead)
            {
                next(oldHead) = nullptr;
                return oldHead;
            }

            return nullptr;
        }

        // new function
        // if std::memory_order_acquire does not apply to next(oldHead)
        // and I don't know if following bugs affect the code
        // GCC prior to 4.8.3 (bug 60272), clang prior to 2014-05-05 (bug 18899)
        // MSVC prior to 2014-03-17 (bug 819819). 
        //template <typename F>
        T* dropHead()
        {
            T* oldHead = nullptr;
            // handle if the list is not empty
            while ((oldHead = head_.load(std::memory_order_acquire)))
            {
                assert(oldHead != nullptr);
                T* nextHead = next(oldHead);
                // because insert and drop out will be involving with head_, they 
                // will change head_ first, then others
                bool res = head_.compare_exchange_weak(oldHead, nextHead, std::memory_order_relaxed,
                    std::memory_order_relaxed);
                if (res && oldHead != nullptr)
                {
                    assert(next(oldHead) == nextHead);
                    next(oldHead) = nullptr;
                    return oldHead;
                }
            }

            return nullptr;
        }

        /**
        * Repeatedly replaces the head with nullptr,
        * and calls func() on the removed elements in the order from tail to head.
        * Stops when the list is empty.
        */
        template <typename F>
        void sweep(F&& func) {
            while (sweepOnce(func)) {
            }
        }

        /**
        * Similar to sweep() but calls func() on elements in LIFO order.
        *
        * func() is called for all elements in the list at the moment
        * reverseSweep() is called.  Unlike sweep() it does not loop to ensure the
        * list is empty at some point after the last invocation.  This way callers
        * can reason about the ordering: elements inserted since the last call to
        * reverseSweep() will be provided in LIFO order.
        *
        * Example: if elements are inserted in the order 1-2-3, the callback is
        * invoked 3-2-1.  If the callback moves elements onto a stack, popping off
        * the stack will produce the original insertion order 1-2-3.
        */
        template <typename F>
        void reverseSweep(F&& func) {
            // We don't loop like sweep() does because the overall order of callbacks
            // would be strand-wise LIFO which is meaningless to callers.
            auto head = head_.exchange(nullptr);
            unlinkAll(head, std::forward<F>(func));
        }

    private:
        std::atomic<T*> head_{ nullptr };

        static T*& next(T* t) {
            return (t->*HookMember).next;
        }

        /* Reverses a linked list, returning the pointer to the new head
        (old tail) */
        static T* reverse(T* head) {
            T* rhead = nullptr;
            while (head != nullptr) {
                auto t = head;
                head = next(t);
                next(t) = rhead;
                rhead = t;
            }
            return rhead;
        }

        /* Unlinks all elements in the linked list fragment pointed to by `head',
        * calling func() on every element */
        template <typename F>
        void unlinkAll(T* head, F&& func) {
            while (head != nullptr) {
                auto t = head;
                head = next(t);
                next(t) = nullptr;
                func(t);
            }
        }
    };

} // namespace folly

下面是测试使用的代码:

#include <memory>
#include <cassert>

#include <iostream>
#include <vector>
#include <thread>
#include <future>
#include <random>
#include <cmath>

#include "folly.h"

using namespace folly;

struct student_name
{
    student_name(int age = 0)
        : age(age)
    {

    }

    int age;
    AtomicIntrusiveLinkedListHook<student_name> node;
};

using ATOMIC_STUDENT_LIST = AtomicIntrusiveLinkedList<student_name, &student_name::node>;

ATOMIC_STUDENT_LIST g_students;
ATOMIC_STUDENT_LIST g_backStudents;

// 统计backStudents的大小
int g_backSize = 0;

std::atomic<int> g_inserts; // insert num (successful)
std::atomic<int> g_drops;   // drop num (successful)

std::atomic<int> g_printNum;    // as same as g_drops

std::atomic<long> g_ageInSum;   // age sum when producing student_name
std::atomic<long> g_ageOutSum;  // age sum when consuming student_name

constexpr int HANDLE_NUM = 2000000;    // when testing, no more than this number, you know 20,000,000 * 100 ~= MAX_INT

constexpr int PRODUCE_THTREAD_NUM = 3;     // producing thread number
constexpr int CONSUME_THREAD_NUM = 3;     // consuming thread number

inline void printOne(student_name* t)
{
    g_printNum.fetch_add(1, std::memory_order_relaxed);
    g_ageOutSum.fetch_add(t->age, std::memory_order_relaxed);
    // clean node
    // delete t;
    g_backStudents.insertHead(t);
}

void eraseOne(student_name* t)
{
    ++g_backSize;
    delete t;
}

void insert_students(int idNo)
{
    std::default_random_engine dre(time(nullptr));
    std::uniform_int_distribution<int> ageDi(1, 99);

    while (true)
    {
        int newAge = ageDi(dre);
        g_ageInSum.fetch_add(newAge, std::memory_order_relaxed);
        auto ns = g_backStudents.dropHead();
        if (ns == nullptr)
        {
            ns = new student_name(newAge);
        }

        g_students.insertHead(ns);
        // use memory_order_relaxed avoiding affect folly memory order
        g_inserts.fetch_add(1, std::memory_order_relaxed);

        // use memory_order_relaxed avoiding affect folly memory order
        if (g_inserts.load(std::memory_order_relaxed) >= HANDLE_NUM)
        {
            return;
        }
    }
}

void drop_students(int idNo)
{
    while (true)
    {
        auto st = g_students.dropHead();
        if (st)
        {
            printOne(st);
            // use memory_order_relaxed avoiding affect folly memory order
            g_drops.fetch_add(1, std::memory_order_relaxed);
        }

        // use memory_order_relaxed avoiding affect folly memory order
        if (g_drops.load(std::memory_order_relaxed) >= HANDLE_NUM)
        {
            return;
        }
    }
}

int main()
{
    std::vector<std::future<void>> insert_threads;
    for (int i = 0; i != PRODUCE_THTREAD_NUM; ++i)
    {
        insert_threads.push_back(std::async(std::launch::async, insert_students, i));
    }

    std::vector<std::future<void>> drop_threads;
    for (int i = 0; i != CONSUME_THREAD_NUM; ++i)
    {
        drop_threads.push_back(std::async(std::launch::async, drop_students, i));
    }

    for (auto& item : insert_threads)
    {
        item.get();
    }

    for (auto& item : drop_threads)
    {
        item.get();
    }

    std::cout << "insert count1: " << g_inserts.load() << std::endl;
    std::cout << "drop count1: " << g_drops.load() << std::endl;
    std::cout << "print num1: " << g_printNum.load() << std::endl;

    std::cout << "age in1: " << g_ageInSum.load() << std::endl;
    std::cout << "age out1: " << g_ageOutSum.load() << std::endl;

    std::cout << std::endl;

    while (true)
    {
        auto st = g_students.dropHead();
        if (st)
        {
            printOne(st);
            // use memory_order_relaxed avoiding affect folly memory order
            g_drops.fetch_add(1, std::memory_order_relaxed);
        }

        if (g_students.empty())
        {
            break;
        }
    }

    std::cout << "insert count2: " << g_inserts.load() << std::endl;
    std::cout << "drop count2: " << g_drops.load() << std::endl;
    std::cout << "print num2: " << g_printNum.load() << std::endl;

    std::cout << "age in2: " << g_ageInSum.load() << std::endl;
    std::cout << "age out2: " << g_ageOutSum.load() << std::endl;

    g_backStudents.sweepOnce(eraseOne);

    std::cout << "back Students size: " << g_backSize << std::endl;
}

测试结果显示:

在folly.h文件中,dropHead函数的断言 assert(next(oldHead) == nextHead); 会触发,这个问题让我感到很意外,经过我认真思考,我发现了其中可能出现的问题。

说明如下:

现在假设有两个获取g_students节点的线程(调用drop_students函数),两者同时运行到获取nextHead(参考dropHead函数),然后其中一个线程(线程A)中断,另外一个线程(线程B)获取了节点(节点a,节点a的next指向节点b),这个节点被插入到g_backStudents中,这时线程B从g_students中再取出一个节点(节点b,节点b的next指向节点c),然后向g_students中插入节点的线程(调用insert_students函数)(线程C)将节点a插入到g_students中,这时,线程A继续运行,运行head_.compare_exchange_weak函数后,则head_指向节点b,而实际上此时的head_应该指向节点c,当前情况下,有两个节点指向了节点b,程序会出现问题。

当然,我所描述的只是出现问题的一种情况,实际上可能会有很多类似的情况,在这里就不一一举例,但是对于更多线程的情况,显然上面描述的情况是合理的,因为只要假设新增加的线程在上述过程中都处于中断状态就可以了。另外,在更多线程的时候,可能会有更多种出现问题的情况,在这里,我只是为了说明上述实现的不合理性。在上一篇,第一条评论中描述的问题,也可以做类似分析,只是将插入到g_backStudents改为delete,将从g_backStudents中获取节点,改为又在delete的地址创建了一个新的节点(虽然可能性很小,但是这种可能性是存在的)。

在这里,我只是展示一种错误的情况,上述的问题,如果将next节点改为shared_ptr,那么在C++20的编译环境下,或许能够解决,不过,这种修改带来的性能损耗,内存占用增加,与使用无锁队列的本意相违背,这种情况下,将原子操作改为自旋锁,说不定更好。

所以我暂时没有继续尝试下去,有兴趣的人可以考虑,如果有什么好的发现,希望能够分享一下。