欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  后端开发

求斐波那契(Fibonacci)数列通项的七种实现方法

程序员文章站 2022-04-15 22:39:27
...
一:递归实现
使用公式f[n]=f[n-1]+f[n-2],依次递归计算,递归结束条件是f[1]=1,f[2]=1。
二:数组实现
空间复杂度和时间复杂度都是0(n),效率一般,比递归来得快。
三:vector<int>实现
时间复杂度是0(n),时间复杂度是0(1),就是不知道vector的效率高不高,当然vector有自己的属性会占用资源。
四:queue<int>实现
当然队列比数组更适合实现斐波那契数列,时间复杂度和空间复杂度和vector<int>一样,但队列太适合这里了,
f(n)=f(n-1)+f(n-2),f(n)只和f(n-1)和f(n-2)有关,f(n)入队列后,f(n-2)就可以出队列了。
五:迭代实现
迭代实现是最高效的,时间复杂度是0(n),空间复杂度是0(1)。
六:公式实现
百度的时候,发现原来斐波那契数列有公式的,所以可以使用公式来计算的。
由于double类型的精度还不够,所以程序算出来的结果会有误差,如果把公式展开计算,得出的结果就是正确的。
完整的实现代码如下:
#include "iostream"
#include "queue"
#include "cmath"
using namespace std;
int fib1(int index)     //递归实现
{
 if(index<1)
 {
  return -1;
 }
 if(index==1 || index==2)
  return 1;
 return fib1(index-1)+fib1(index-2);
}
int fib2(int index)     //数组实现
{
 if(index<1)
 {
  return -1;
 }
 if(index<3)
 {
  return 1;
 }
 int *a=new int[index];
 a[0]=a[1]=1;
 for(int i=2;i<index;i++)
  a[i]=a[i-1]+a[i-2];
 int m=a[index-1];
 delete a;         //释放内存空间
 return m;
}
int fib3(int index)           //借用vector<int>实现
{
 if(index<1)
 {
  return -1;
 }
 vector<int> a(2,1);      //创建一个含有2个元素都为1的向量
 a.reserve(3);
 for(int i=2;i<index;i++)
 {
  a.insert(a.begin(),a.at(0)+a.at(1));
  a.pop_back();
 }
 return a.at(0);
} 
int fib4(int index)       //队列实现
{
 if(index<1)
 {
  return -1;
 }
 queue<int>q;
 q.push(1);
 q.push(1);
 for(int i=2;i<index;i++)
 {
  q.push(q.front()+q.back());
  q.pop();
 }
 return q.back();
}
int fib5(int n)          //迭代实现
{
 int i,a=1,b=1,c=1;
 if(n<1)
 {
  return -1;
 }
 for(i=2;i<n;i++)
 {
  c=a+b;     //辗转相加法(类似于求最大公约数的辗转相除法)
  a=b;
  b=c;
 }
 return c;
}
int fib6(int n)
{
 double gh5=sqrt((double)5);
 return (pow((1+gh5),n)-pow((1-gh5),n))/(pow((double)2,n)*gh5);
} 
int main(void)
{
 printf("%d\n",fib3(6));
 system("pause");
 return 0;
}

七:二分矩阵方法

求斐波那契(Fibonacci)数列通项的七种实现方法

如上图,Fibonacci 数列中任何一项可以用矩阵幂算出,而n次幂是可以在logn的时间内算出的。
下面贴出代码:

void multiply(int c[2][2],int a[2][2],int b[2][2],int mod)
{
 int tmp[4];
 tmp[0]=a[0][0]*b[0][0]+a[0][1]*b[1][0];
 tmp[1]=a[0][0]*b[0][1]+a[0][1]*b[1][1];
 tmp[2]=a[1][0]*b[0][0]+a[1][1]*b[1][0];
 tmp[3]=a[1][0]*b[0][1]+a[1][1]*b[1][1];
 c[0][0]=tmp[0]%mod;
 c[0][1]=tmp[1]%mod;
 c[1][0]=tmp[2]%mod;
 c[1][1]=tmp[3]%mod;
}//计算矩阵乘法,c=a*b
int fibonacci(int n,int mod)//mod表示数字太大时需要模的数
{
 if(n==0)return 0;
 else if(n<=2)return 1;//这里表示第0项为0,第1,2项为1
 int a[2][2]={{1,1},{1,0}};
 int result[2][2]={{1,0},{0,1}};//初始化为单位矩阵
 int s;
 n-=2;
 while(n>0)
 {
  if(n%2 == 1)
   multiply(result,result,a,mod);
  multiply(a,a,a,mod);
  n /= 2;
 }//二分法求矩阵幂
 s=(result[0][0]+result[0][1])%mod;//结果
 return s;
}

附带的再贴上二分法计算a的n次方函数。

int pow(int a,int n)
{
 int ans=1;
 while(n)
 {
  if(n&1)
   ans*=a;
  a*=a;
  n>>=1;
 }
 return ans;
}

更多求斐波那契(Fibonacci)数列通项的七种实现方法相关文章请关注PHP中文网!