欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  科技

口音识别难倒AI:“人机交互”的未来还有多远?

程序员文章站 2022-03-04 23:40:52
让机器“听懂”人类语言,是“”技术自诞生起,就一直致力的目标。自20世纪中叶以来,经过近70年的发展,特别是随着技术的引入,自动已取得突破性进展在标准口...

让机器“听懂”人类语言,是“”技术自诞生起,就一直致力的目标。

自20世纪中叶以来,经过近70年的发展,特别是随着技术的引入,自动已取得突破性进展在标准口音、常见词汇、安静环境的应用场景下,机器已然具备接近人类的“听觉”能力。

然而,一旦面临口音、方言等情境,便显得有些“力不从心”,哪怕你一字一句尽力向智能设备发出清晰的指令,得到的回答仍可能是:“对不起,我好像不明白你在说什么……”

技术发展的终极目标,是实现自然、顺畅的“”,正如同人与人的交互。如何解决横亘在当下的这道难题,抵达人类畅想的智能未来,已成为全球智能语音技术公司共同面对的挑战。

全世界的ai,都栽在了“口音”上?

口音、方言等问题,困扰着几乎全世界所有的智能语音助手。

2018年,《华盛顿邮报》曾与globalme、pulse labs两家语言研究公司合作,研究智能音箱的口音识别问题,结果显示,谷歌智能音箱google home更容易“听懂”西岸口音,对南部口音的识别准确率则要低3%;而亚马逊echo搭载的语音助手alexa,识别东岸口音的准确率要比中西部口音高2%。

更大的问题还在于对非本土口音的识别。研究显示,对于非英语母语者,比如以语或汉语作为第一语言的人所说的英文,不论是google home还是amazon echo,其识别准确率都要比美国本土口音低30%,而拉丁裔和华裔是美国的两大族群。

这项研究结果引起了人们对智能语音助手“地域歧视”问题的广泛关注。实际上,不只是google home和amazon echo,市场上主流的智能语音设备,在应对方言、口音等非标准语言场景时,表现都差强人意。

在中国市场,这个问题同样凸显。

所谓“十里不同音,百里不同俗”。作为一个幅员辽阔的多民族国家,我国56个民族使用的语言分属五大语系,共有80种以上语言。其中,汉语的使用人数最多,分为标准语(普通话)和方言。

根据部2019年发布的《中国语言文字概况》,汉语方言通常分为十大方言,各方言区内,又分布着若干次方言和许多种土语。部分方言之间差异很大,无法通话。为了消除语言隔阂,国家在全社会大力推广普通话。然而,来自天南海北的人们,又赋予普通话五花八门的口音。

带有鲜明地域特色的口音,虽然对于人们的日常交流无伤大雅,有时还带来些“普通话”的乐趣,但你的智能语音助手就乐不起来了,甚至在它听来,你说的极有可能是另一门语言……

与此同时,用户也很恼火:“难道普通话不过一级乙等,我就不配拥有智能音箱?!”

口音、方言识别,到底在哪儿

从理论上来说,只要有足够的数据供机器进行训练,那么让ai识别任何一种语言或口音,都不是问题。

以为目的的,是一个把声学信号转化为文本信息的过程。目前主流的框架主要由三个部分组成:声学模型(am)、语言模型(lm)和解码器。可以形象地理解为:声学模型负责找到对应的拼音,语言模型负责找到对应的句子。

要得到一个出色的模型,需要有大量标注数据的训练,简单来说:首先,要进行语音内容的采集;其次,需要人工对这些语音进行标注,将语音内容转写成文本,让算法能够识别它;之后,算法再将识别后的文本内容与对应的音频进行逻辑关联。经过这样大量、反复的学习训练之后,机器就能实现了。

“对于方言、口音的识别来说,最难的部分是在于语音数据的采集。”百度智能云数据众包项目专家曹静文表示。

2019年9月,百度数据众包团队曾执行过一个藏语方言语音采集的项目。客户为了提升藏语方言的识别和翻译准确率,与百度团队合作,招募870位藏民,整体采集87万条藏语语音,覆盖安多、康巴、卫藏等三个藏语方言区。

藏语与汉语同属汉藏语系,但与汉语这样资源丰富的语言不同,藏语属于低资源语言,目前全世界约有800万人使用藏语,训练数据稀少。

曹静文介绍,藏区采集工作面临风险大、质检难度高等挑战。整个项目过程涉及诸多环节,从按需定制采集方案,到采集布点、人员招募、培训、隐私授权,再到对采集流程、进度和项目风险进行把控,最后经过多轮质检,在数据核验通过后,才能最终交付确认。

百度团队在第一时间联系到当地的资源布点,并派遣项目经理前往*、青海等地指导采集。最终该项目用时一个半月,实际交付数据92万条,验收合格率高于95%,满足交付要求。

“这个过程往往成本高昂、流程繁琐,还存在诸多门槛。”曹静文表示。

应对“数据稀缺”,众包模式受青睐

语料库的质量越高,语言模型越丰富,的准确率就越高。如何获取大量训练数据,就成为ai在口音、方言及低资源语言的识别上,面临的关键问题。

全球各大ai巨头和前沿的科技公司,都在积极致力于解决这个问题。

一方面,对于投入市场的智能语音产品来说,随着越来越多拥有不同口音的用户与其进行交流,训练数据持续积累,语音助手的识别能力会不断提升。另一方面,在自身语音数据集的扩充上,一些公司也在尝试采取各种“众包模式”。

“众包”是一种分布式的问题解决和生产模式,企业通过,以*自愿的形式,将工作分配给外部的大众群体。

比如,谷歌、亚马逊等科技巨头,以的形式鼓励用户使用不同地区的方言进行交谈;国内智能语音企业科大讯飞推出“方言保护计划”,鼓励用户“留下乡音”,共建“中国方言库”;一些机构和企业呼吁齐力“献声”,打破巨头公司的数据垄断,建立开源开放的语音数据集等。

这些方式实际上都是以众包模式,获取大量的语音训练数据。

“众包模式的优势在于,可以低成本、高效率地整合资源。”曹静文表示。

2019年底,百度数据众包团队承接了一项海外英文语音采集项目。某厂商为了提升海外各国英文唤醒词的识别率,需要采集海外不同地域用户的英文语音,包括地区口音、英式口音、美式口音、印式口音及口音,需招募2000人,总数据量为20万条。

“这个项目的难点在于,要求采集的用户口音遍布多国,交付时间短,且对用户的性别、年龄段要求严格。”曹静文说,“但我们通过百度覆盖全国及全球22个国家的资源池,在短时间内招募到了全球多种口音用户参与采集。”

项目执行期间,恰逢春节假期和突发的新冠疫情,百度团队通过国内线上和国外线下的采集方式,执行布点覆盖9个国家,用时45天,按照客户要求完成了全部数据交付。

实践证明,众包模式的确是完善语音数据库的一条有效路径。

但光有数据库的支持还不够。要提高某种语言的识别准确率,还需要对该语言的文化、语素、音素等有相当的研究。因此,要实现方言、口音的准确识别,也需要方言学者、音韵学者等专业人士的深度参与。

此外,另一个现实情况是,一些方言和低资源语言,很难提供充足的数据资源以供采集。这种情况下,探索如何通过迁移学习,用较少数据量得到一个好的声学模型,就成为当前一个热门且极具价值的研究方向。