欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  Java

具体介绍Java8中CAS的增强

程序员文章站 2022-04-15 21:13:10
...
几天前,我偶然地将之前写的用来测试AtomicInteger和synchronized的自增性能的代码跑了一下,意外地发现AtomicInteger的性能比synchronized更好了,经过一番原因查找,有了如下发现:

在jdk1.7中,AtomicInteger的getAndIncrement是这样的:

public final int getAndIncrement() {
    for (;;) {
        int current = get();
        int next = current + 1;
        if (compareAndSet(current, next))
            return current;
    }
}
public final boolean compareAndSet(int expect, int update) {
    return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}

而在jdk1.8中,是这样的:

public final int getAndIncrement() {
    return unsafe.getAndAddInt(this, valueOffset, 1);
}

可以看出,在jdk1.8中,直接使用了Unsafe的getAndAddInt方法,而在jdk1.7的Unsafe中,没有此方法。(PS:为了找出原因,我反编译了Unsafe,发现CAS的失败重试就是在getAndAddInt方法里完成的,我用反射获取到Unsafe实例,编写了跟getAndAddInt相同的代码,但测试结果却跟jdk1.7的getAndIncrement一样慢,不知道Unsafe里面究竟玩了什么黑魔法,还请高人不吝指点)(补充:文章末尾已有推论)

通过查看AtomicInteger的源码可以发现,受影响的还有getAndAdd、addAndGet等大部分方法。

有了这次对CAS的增强,我们又多了一个使用非阻塞算法的理由。

最后给出测试代码,需要注意的是,此测试方法简单粗暴,compareAndSet的性能不如synchronized,并不能简单地说synchronized就更好,两者的使用方式是存在差异的,而且在实际使用中,还有业务处理,不可能有如此高的竞争强度,此对比仅作为一个参考,该测试能够证明的是,AtomicInteger.getAndIncrement的性能有了大幅提升。

package performance;

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.locks.LockSupport;

public class AtomicTest {
	//测试规模,调用一次getAndIncreaseX视作提供一次业务服务,记录提供TEST_SIZE次服务的耗时
	private static final int TEST_SIZE = 100000000;
	//客户线程数
	private static final int THREAD_COUNT = 10;
	//使用CountDownLatch让各线程同时开始
	private CountDownLatch cdl = new CountDownLatch(THREAD_COUNT + 1);

	private int n = 0;
	private AtomicInteger ai = new AtomicInteger(0);
	private long startTime;

	public void init() {
		startTime = System.nanoTime();
	}

	/**
	 * 使用AtomicInteger.getAndIncrement,测试结果为1.8比1.7有明显性能提升
	 * @return
	 */
	private final int getAndIncreaseA() {
		int result = ai.getAndIncrement();
		if (result == TEST_SIZE) {
			System.out.println(System.nanoTime() - startTime);
			System.exit(0);
		}
		return result;
	}

	/**
	 * 使用synchronized来完成同步,测试结果为1.7和1.8几乎无性能差别
	 * @return
	 */
	private final int getAndIncreaseB() {
		int result;
		synchronized (this) {
			result = n++;
		}
		if (result == TEST_SIZE) {
			System.out.println(System.nanoTime() - startTime);
			System.exit(0);
		}
		return result;
	}

	/**
	 * 使用AtomicInteger.compareAndSet在java代码层面做失败重试(与1.7的AtomicInteger.getAndIncrement的实现类似),
	 * 测试结果为1.7和1.8几乎无性能差别
	 * @return
	 */
	private final int getAndIncreaseC() {
		int result;
		do {
			result = ai.get();
		} while (!ai.compareAndSet(result, result + 1));
		if (result == TEST_SIZE) {
			System.out.println(System.nanoTime() - startTime);
			System.exit(0);
		}
		return result;
	}

	public class MyTask implements Runnable {
		@Override
		public void run() {
			cdl.countDown();
			try {
				cdl.await();
			} catch (InterruptedException e) {
				e.printStackTrace();
			}
			while (true)
				getAndIncreaseA();// getAndIncreaseB();
		}
	}

	public static void main(String[] args) throws InterruptedException {
		AtomicTest at = new AtomicTest();
		for (int n = 0; n < THREAD_COUNT; n++)
			new Thread(at.new MyTask()).start();
		System.out.println("start");
		at.init();
		at.cdl.countDown();
	}
}

以下是在Intel(R) Core(TM) i7-4710HQ CPU @2.50GHz(四核八线程)下的测试结果(波动较小,所以每项只测试了四五次,取其中一个较中间的值):

jdk1.7

AtomicInteger.getAndIncrement 12,653,757,034
synchronized 4,146,813,462
AtomicInteger.compareAndSet 12,952,821,234

jdk1.8

AtomicInteger.getAndIncrement 2,159,486,620
synchronized 4,067,309,911
AtomicInteger.compareAndSet 12,893,188,541

补充:应网友要求,在此提供Unsafe.getAndAddInt的相关源码以及我的测试代码。

用jad反编译jdk1.8中Unsafe得到的源码:

public final int getAndAddInt(Object obj, long l, int i)
{
    int j;
    do
        j = getIntVolatile(obj, l);
    while(!compareAndSwapInt(obj, l, j, j + i));
    return j;
}
public native int getIntVolatile(Object obj, long l);
public final native boolean compareAndSwapInt(Object obj, long l, int i, int j);

openjdk8的Unsafe源码:

public final int getAndAddInt(Object o, long offset, int delta) {
    int v;
    do {
        v = getIntVolatile(o, offset);
    } while (!compareAndSwapInt(o, offset, v, v + delta));
    return v;
}
public native int     getIntVolatile(Object o, long offset);
public final native boolean compareAndSwapInt(Object o, long offset,
int expected,
int x);

我的测试代码(提示:如果eclipse等ide报错,那是因为使用了受限的Unsafe,可以将警告级别从error降为warning,具体百度即可):

...
import sun.misc.Unsafe;
public class AtomicTest {
	....
	private Unsafe unsafe;
	private long valueOffset;
	public AtomicTest(){
		Field f;
		try {
			f = Unsafe.class.getDeclaredField("theUnsafe");
			f.setAccessible(true);
			unsafe = (Unsafe)f.get(null);
			valueOffset = unsafe.objectFieldOffset(AtomicInteger.class.getDeclaredField("value"));
		}catch(NoSuchFieldException e){
		...
		}
	}
	private final int getAndIncreaseD(){
		int result;
		do{
			result = unsafe.getIntVolatile(ai, valueOffset);
		}while(!unsafe.compareAndSwapInt(ai, valueOffset, result, result+1));
		if(result == MAX){
			System.out.println(System.nanoTime()-startTime);
			System.exit(0);
		}
		return result;
	}
	...
}

补充2:对于性能提升的原因,有以下推论,虽不敢说百分之百正确(因为没有用jvm的源码作为论据),但还是有很大把握的,感谢网友@周 可人和@liuxinglanyue!

Unsafe是经过特殊处理的,不能理解成常规的java代码,区别在于:

在调用getAndAddInt的时候,如果系统底层支持fetch-and-add,那么它执行的就是native方法,使用的是fetch-and-add;
如果不支持,就按照上面的所看到的getAndAddInt方法体那样,以java代码的方式去执行,使用的是compare-and-swap;

这也正好跟openjdk8中Unsafe::getAndAddInt上方的注释相吻合:

// The following contain CAS-based Java implementations used on
// platforms not supporting native instructions

Unsafe的特殊处理也就是我上文所说的“黑魔法”。

以上就是具体介绍Java8中CAS的增强的详细内容,更多请关注其它相关文章!

相关标签: Java8,CAS