欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Pandas系列-读取csv/txt/excel/mysql数据

程序员文章站 2022-04-15 08:56:24
本代码演示: 1. pandas读取纯文本文件 读取csv文件 读取txt文件 2. pandas读取xlsx格式excel文件 3. pandas读取mysql数据表 1、读取纯文本文件 1.1 读取CSV,使用默认的标题行、逗号分隔符 .dataframe tbody tr th:only of ......

本代码演示:

  1. pandas读取纯文本文件
  • 读取csv文件
  • 读取txt文件
  1. pandas读取xlsx格式excel文件
  2. pandas读取mysql数据表
import pandas as pd

1、读取纯文本文件

1.1 读取csv,使用默认的标题行、逗号分隔符

fpath = "./datas/ml-latest-small/ratings.csv"
# 使用pd.read_csv读取数据
ratings = pd.read_csv(fpath)
# 查看前几行数据
ratings.head()
userid movieid rating timestamp
0 1 1 4.0 964982703
1 1 3 4.0 964981247
2 1 6 4.0 964982224
3 1 47 5.0 964983815
4 1 50 5.0 964982931
# 查看数据的形状,返回(行数、列数)
ratings.shape
(100836, 4)
# 查看列名列表
ratings.columns
index(['userid', 'movieid', 'rating', 'timestamp'], dtype='object')
# 查看索引列
ratings.index
rangeindex(start=0, stop=100836, step=1)
# 查看每列的数据类型
ratings.dtypes
userid         int64
movieid        int64
rating       float64
timestamp      int64
dtype: object

1.2 读取txt文件,自己指定分隔符、列名

fpath = "./datas/crazyant/access_pvuv.txt"
pvuv = pd.read_csv(
    fpath,
    sep="\t",
    header=none,
    names=['pdate', 'pv', 'uv']
)
pvuv
pdate pv uv
0 2019-09-10 139 92
1 2019-09-09 185 153
2 2019-09-08 123 59
3 2019-09-07 65 40
4 2019-09-06 157 98
5 2019-09-05 205 151
6 2019-09-04 196 167
7 2019-09-03 216 176
8 2019-09-02 227 148
9 2019-09-01 105 61

2、读取excel文件

fpath = "./datas/crazyant/access_pvuv.xlsx"
pvuv = pd.read_excel(fpath)
pvuv
日期 pv uv
0 2019-09-10 139 92
1 2019-09-09 185 153
2 2019-09-08 123 59
3 2019-09-07 65 40
4 2019-09-06 157 98
5 2019-09-05 205 151
6 2019-09-04 196 167
7 2019-09-03 216 176
8 2019-09-02 227 148
9 2019-09-01 105 61

3、读取mysql数据库

import pymysql
conn = pymysql.connect(
        host='127.0.0.1',
        user='root',
        password='12345678',
        database='test',
        charset='utf8'
    )
mysql_page = pd.read_sql("select * from crazyant_pvuv", con=conn)
mysql_page
pdate pv uv
0 2019-09-10 139 92
1 2019-09-09 185 153
2 2019-09-08 123 59
3 2019-09-07 65 40
4 2019-09-06 157 98
5 2019-09-05 205 151
6 2019-09-04 196 167
7 2019-09-03 216 176
8 2019-09-02 227 148
9 2019-09-01 105 61

本文的代码地址: