欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

BZOJ 4289: PA2012 Tax(最短路)

程序员文章站 2022-04-15 08:15:40
Description 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价。起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边权 N<=100000 M<=200000 给出一个N个点M条边的无向图,经过一个点的代价是进入和离 ......
Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 755  Solved: 240
[Submit][Status][Discuss]

Description

给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价。起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边权
N<=100000
M<=200000
 
 

 

Input

 

Output

 

Sample Input

4 5
1 2 5
1 3 2
2 3 1
2 4 4
3 4 8

Sample Output

12

HINT

 

 


 

 

Source

 

这题居然卡long long,也是没谁了

首先一个很显然的思路是暴力拆边

即把每个点每一条入边和每一条出边的两两看做一个点,权值为两边的较大值

但是这样很显然是$O(m^2)$,肯定会GG

所以我们考虑一种神仙操作。

对于一条无向边,我们把它看成两条有向边

然后我们这样构图

1.对于一个点,我们把它的出边从小到大排序

2.枚举每一条边,如果这条边连接着1或者N,那么我们从S连向这条边或者从这条边连向T,权值为该边的权值

3.从改边所对应的入边向该边连一条边,边权为它们的权值

4.枚举每一条出边,从权值较小的向权值较大的连权值为两边差值的边,从权值较大的向权值较小的连权值为0的边

可能这样说不是很清楚,借鉴一下这位大佬的图

BZOJ 4289: PA2012 Tax(最短路)

 

 

#include<cstdio>
#include<algorithm>
#include<queue>
#include<cstring>
#define Pair pair<long long,int>
#define F first
#define S second
const int MAXN=2*1e6+10;
using namespace std;
inline int read()
{
    char c=getchar();int x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
    return x*f;
}
struct Edge
{
    int u,v,w,nxt;
}E[MAXN];
int headE[MAXN],numE=2;
inline void add_edge(int x,int y,int z)
{
    E[numE].u=x;
    E[numE].v=y;
    E[numE].w=z;
    E[numE].nxt=headE[x];
    headE[x]=numE++;
}
struct node
{
    int u,v,w,nxt;
}edge[MAXN];
int head[MAXN],num=2;
inline void AddEdge(int x,int y,int z)
{
    edge[num].u=x;
    edge[num].v=y;
    edge[num].w=z;
    edge[num].nxt=head[x];
    head[x]=num++;
}
int N,M,S,T;
int temp[MAXN];
long long  dis[MAXN];
bool vis[MAXN];
void Dijstra()
{
    memset(dis,0xf,sizeof(dis));dis[S]=0;
    priority_queue<Pair>q;
    q.push(make_pair(0,S));
    while(q.size()!=0)
    {
        while(vis[q.top().second]&&q.size()>0) q.pop();
        long long  p=q.top().second;
        vis[p]=1;
        for(int i=head[p];i!=-1;i=edge[i].nxt)
            if(dis[edge[i].v]>dis[p]+edge[i].w)
                dis[edge[i].v]=dis[p]+edge[i].w,
                q.push(make_pair(-dis[edge[i].v],edge[i].v));
    }
    printf("%lld\n",dis[T]);
}
int comp(const int &a,const int &b)
{
    return E[a].w<E[b].w;
}
int main()
{
    #ifdef WIN32
    freopen("a.in","r",stdin);
    #else
    #endif
    memset(headE,-1,sizeof(headE));
    memset(head,-1,sizeof(head));
    N=read();M=read();S=1,T=2*(M+1);
    for(int i=1;i<=M;i++)
    {
        int x=read(),y=read(),z=read();
        add_edge(x,y,z);
        add_edge(y,x,z);
    }
    for(int i=1;i<=N;i++)
    {
        int tempnum=0;
        for(int j=headE[i];j!=-1;j=E[j].nxt)
            temp[++tempnum]=j;
        sort(temp+1,temp+tempnum+1,comp);
        for(int j=1;j<=tempnum;j++)
        {
            int x=temp[j],y=temp[j+1];
            if(E[x].u==1) 
                AddEdge(S,x,E[x].w);
            if(E[x].v==N) 
                AddEdge(x,T,E[x].w);
            AddEdge(x^1,x,E[x].w);
            if(j!=tempnum)
                AddEdge(x,y,E[y].w-E[x].w),
                AddEdge(y,x,0);
        }
    }
    Dijstra();
    return 0;
}