欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

模拟退火算法

程序员文章站 2022-04-14 23:20:23
模拟退火 首先看一下度娘的定义 模拟退火算法(Simulate Anneal,SA)是一种通用概率演算法,用来在一个大的搜寻空间内找寻命题的最优解 模拟退火是一种非常好用的随机化算法,它是爬山算法的改进版 爬山算法的思想就是一个劲的找最优解,如果接下来的任何状态都比当前状态差,那么就停止 但是这样显 ......

模拟退火

首先看一下度娘的定义

模拟退火算法(Simulate Anneal,SA)是一种通用概率演算法,用来在一个大的搜寻空间内找寻命题的最优解

模拟退火是一种非常好用的随机化算法,它爬山算法的改进版

爬山算法的思想就是一个劲的找最优解,如果接下来的任何状态都比当前状态差,那么就停止

但是这样显然是错误的,比如下面这种情况

 模拟退火算法

 

爬山找到A点之后就GG了,但是模拟退火算法会以一定的概率走向F,进而走向B,找到更优的解

 

至于这里为什么叫做“退火”,还要从物理学说起

在热力学上,退火(annealing)现象指物体逐渐降温的物理现象,温度愈低,物体的能量状态会低;够低后,液体开始冷凝与结晶,在结晶状态时,系统的能量状态最低。大自然在缓慢降温(亦即,退火)时,可“找到”最低能量状态:结晶。但是,如果过程过急过快,快速降温(亦称「淬炼」,quenching)时,会导致不是最低能态的非晶形。

这里的最低能量状态,也就是我们题目中的最优解

 

实现

因为要模拟退火的过程,因此我们先定义一些变量

$T$:当前温度,由高温到低温,代表算法进行到了什么程度,一般为double类型

$\Delta T$:每次温度的变化率,一般取$0.95 - 0.99$,模拟缓慢降温的过程(上一次的温度乘温度变换率即为这一次的温度)

$f(x)$ 当前状态对应的值

 

上面我们提到,模拟退火会以一定的概率转移到比当前差的解,那么这个概率是多少呢?科学家经过分析,当这个概率为$e^{\frac{\Delta f}{T}}$时最优

 

那么根据退火的过程,我们不难得到模拟退火的算法流程

  1. 枚举温度$T$
  2. 计算出下一步的状态
  3. 若下一步的状态比当前状态优或者满足进行转移的条件,进行转移
  4. 降温

 

因为模拟退火算法具有偶然性,因此我们一般需要对一个问题进行多次模拟退火算法

 

至于温度的设定,以及执行算法次数的确定,这个需要看rp依题目而定

 

听说模拟退火在计算几何中有非常重要的应用,但是本蒟蒻现在连叉积都不会,所以这一块等以后再补吧

 

 

题目

两道很水不错的题目

洛谷P1337

题解

 

洛谷P2503

题解

 

上一篇: 数据组合

下一篇: 使用python实现ANN